Research Output per year

## Fingerprint Dive into the research topics where Haseo Ki is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Zero
Mathematics

Riemann zeta function
Mathematics

Selberg Class
Mathematics

Riemann hypothesis
Mathematics

Entire Function
Mathematics

Line
Mathematics

Functional equation
Mathematics

Derivative
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 1995 2018

## Pair correlation of zeros of the real and imaginary parts of the Riemann zeta-function

Gonek, S. M. & Ki, H., 2018 May, In : Journal of Number Theory. 186, p. 35-61 27 p.Research output: Contribution to journal › Article

Riemann hypothesis

Riemann zeta function

Zero

## Additive problems with smooth integers

Ki, H., Maier, H. & Sankaranarayanan, A., 2016 Jan 1, In : Acta Arithmetica. 175, 4, p. 301-319 19 p.Research output: Contribution to journal › Article

1
Citation
(Scopus)

## On the zeros of Weng zeta functions for Chevalley groups

Ki, H., Komori, Y. & Suzuki, M., 2015 Sep 11, In : Manuscripta Mathematica. 148, 1-2, p. 119-176 58 p.Research output: Contribution to journal › Article

Chevalley Groups

Riemann zeta function

Line

Zero

3
Citations
(Scopus)

## A uniqueness theorem for functions in the extended Selberg class

Gonek, S. M., Haan, J. & Ki, H., 2014 Nov 12, In : Mathematische Zeitschrift. 278, 3-4, p. 995-1004 10 p.Research output: Contribution to journal › Article

Selberg Class

Uniqueness Theorem

Functional equation

Complex number

Uniqueness

3
Citations
(Scopus)

## On uniqueness in the extended selberg class of dirichlet series

Ki, H. & Li, B. Q., 2013 Oct 4, In : Proceedings of the American Mathematical Society. 141, 12, p. 4169-4173 5 p.Research output: Contribution to journal › Article

Selberg Class

Dirichlet Series

Functional equation

Uniqueness

Zero