• 1730 Citations
  • 18 h-Index
20012019

Research output per year

If you made any changes in Pure these will be visible here soon.

Fingerprint Dive into the research topics where Seon Joo Kim is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

  • 1730 Citations
  • 18 h-Index
  • 21 Conference contribution
  • 14 Article
  • 2 Conference article
  • 1 Paper

Probabilistic moving least squares with spatial constraints for nonlinear color transfer between images

Hwang, Y., Lee, J. Y., Kweon, I. S. & Kim, S. J., 2019 Mar, In : Computer Vision and Image Understanding. 180, p. 1-12 12 p.

Research output: Contribution to journalArticle

  • 3 Citations (Scopus)

    Southern Hemisphere mid- and high-latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations

    Ahn, D. H., Choi, T., Kim, J., Park, S. S., Lee, Y. G., Kim, S-J. & Koo, J-H., 2019 Apr 1, In : Progress in Earth and Planetary Science. 6, 1, p. 34

    Research output: Contribution to journalArticle

  • Building emotional machines: Recognizing image emotions through deep neural networks

    Kim, H. R., Kim, Y. S., Kim, S. J. & Lee, I. K., 2018 Nov, In : IEEE Transactions on Multimedia. 20, 11, p. 2980-2992 13 p., 8344491.

    Research output: Contribution to journalArticle

  • 16 Citations (Scopus)

    Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation

    Jo, Y., Oh, S. W., Kang, J. & Kim, S. J., 2018 Dec 14, Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018. IEEE Computer Society, p. 3224-3232 9 p. 8578438. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • 65 Citations (Scopus)

    EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth from Light Field Images

    Shin, C., Jeon, H. G., Yoon, Y., Kweon, I. S. & Kim, S. J., 2018 Dec 14, Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018. IEEE Computer Society, p. 4748-4757 10 p. 8578597. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • 40 Citations (Scopus)