• 5092 Citations
  • 34 h-Index
1990 …2019
If you made any changes in Pure these will be visible here soon.

Research Output 1990 2019

2019

A review and empirical analysis of neural networks based exchange rate prediction

Pandey, T. N., Jagadev, A. K., Dehuri, S. & Cho, S-B., 2019 Jan 1, In : Intelligent Decision Technologies. 12, 4, p. 423-439 17 p.

Research output: Contribution to journalReview article

Neural networks
Multilayer neural networks
Time series
Backpropagation
Learning systems

Deep Dense Convolutional Networks for Repayment Prediction in Peer-to-Peer Lending

Kim, J. Y. & Cho, S-B., 2019 Jan 1, International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, Proceedings. Saez, J. A., Corchado, E., Herrero, A., Grana, M., Lopez-Guede, J. M., Etxaniz, O. & Quintian, H. (eds.). Springer Verlag, p. 134-144 11 p. (Advances in Intelligent Systems and Computing; vol. 771).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Neural networks
Convolution
Learning systems
1 Citations

Hierarchical modular Bayesian networks for low-power context-aware smartphone

Cho, S-B. & Yu, J. M., 2019 Jan 31, In : Neurocomputing. 326-327, p. 100-109 10 p.

Research output: Contribution to journalArticle

Smartphones
Bayesian networks
Equipment and Supplies
Sensors
Hybrid systems
2018

Adaptive database intrusion detection using evolutionary reinforcement learning

Choi, S. G. & Cho, S. B., 2018 Jan 1, International Joint Conference SOCO’17- CISIS’17-ICEUTE’17, Proceedings. Springer Verlag, p. 547-556 10 p. (Advances in Intelligent Systems and Computing; vol. 649).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Reinforcement learning
Intrusion detection
Feedforward neural networks
Feedback

A hybrid deep learning system of CNN and LRCN to detect cyberbullying from SNS comments

Bu, S. J. & Cho, S-B., 2018 Jan 1, Hybrid Artificial Intelligent Systems - 13th International Conference, HAIS 2018, Proceedings. Herrero, A., Quintian, H., Antonio Saez, J., Corchado, E., de Cos Juez, F. J., Villar, J. R. & de la Cal, E. A. (eds.). Springer Verlag, p. 561-572 12 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10870 LNAI).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hybrid Learning
Learning Systems
Hybrid Systems
Social Networks
Learning systems
1 Citations

An evolutionary agent-based framework for modeling and analysis of labor market

Yu, J. M. & Cho, S-B., 2018 Jan 3, In : Neurocomputing. 271, p. 84-94 11 p.

Research output: Contribution to journalArticle

Salaries and Fringe Benefits
Systems Analysis
Personnel
Efficiency
Sick Leave
Neural networks
Radial basis function networks
Multilayer neural networks
Mean square error
Statistical Models

Applying accuracy-based LCS to detecting anomalous database access

Seo, S. & Cho, S. B., 2018 Jul 6, GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. Association for Computing Machinery, Inc, p. 1442-1448 7 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Anomalous
Adaptive Learning
Intrusion detection
Intrusion Detection
Rule Generation

CCTV Image Sequence Generation and Modeling Method for Video Anomaly Detection Using Generative Adversarial Network

Shin, W. & Cho, S-B., 2018 Jan 1, Intelligent Data Engineering and Automated Learning – IDEAL 2018 - 19th International Conference, Proceedings. Yin, H., Novais, P., Camacho, D. & Tallón-Ballesteros, A. J. (eds.). Springer Verlag, p. 457-467 11 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11314 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Closed circuit television systems
Anomaly Detection
Image Sequence
Transfer Learning
Modeling Method

Detecting Intrusive Malware with a Hybrid Generative Deep Learning Model

Kim, J. Y. & Cho, S-B., 2018 Jan 1, Intelligent Data Engineering and Automated Learning – IDEAL 2018 - 19th International Conference, Proceedings. Yin, H., Novais, P., Camacho, D. & Tallón-Ballesteros, A. J. (eds.). Springer Verlag, p. 499-507 9 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11314 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Malware
Semantics
Gaussian distribution
Model
Transfer Learning

Divide-and-Conquer Approach for Revealing the Non-dominated Solutions in Multi-objective Optimization Problem

De, S. S., Dehuri, S. & Cho, S. B., 2018 Jul 31, Proceedings - 2017 International Conference on Information Technology, ICIT 2017. Institute of Electrical and Electronics Engineers Inc., p. 143-151 9 p. 8423898

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Multiobjective optimization
Optimization problem
Multi-objective optimization
3 Citations

Fuzzy-Rough Entropy Measure and Histogram Based Patient Selection for miRNA Ranking in Cancer

Pal, J. K., Ray, S. S., Cho, S-B. & Pal, S. K., 2018 Mar 1, In : IEEE/ACM Transactions on Computational Biology and Bioinformatics. 15, 2, p. 659-672 14 p.

Research output: Contribution to journalArticle

MicroRNA
Entropy
MicroRNAs
Histogram
Patient Selection

Hybrid deep learning based on GAN for classifying BSR noises from invehicle sensors

Kim, J. Y., Bu, S. J. & Cho, S-B., 2018 Jan 1, Hybrid Artificial Intelligent Systems - 13th International Conference, HAIS 2018, Proceedings. Herrero, A., Quintian, H., Antonio Saez, J., Corchado, E., de Cos Juez, F. J., Villar, J. R. & de la Cal, E. A. (eds.). Springer Verlag, p. 27-38 12 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10870 LNAI).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hybrid Learning
Classifiers
Discriminators
Sensor
Sensors

Learning bayesian network to predict group emotion in kindergarten by evolutionary computation

Choi, S. G. & Cho, S. B., 2018 Jan 1, International Joint Conference SOCO’17- CISIS’17-ICEUTE’17, Proceedings. Springer Verlag, p. 3-12 10 p. (Advances in Intelligent Systems and Computing; vol. 649).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Bayesian networks
Evolutionary algorithms
Chromosomes
Luminance
Atmospheric humidity

Learning classifier systems for adaptive learning of intrusion detection system

Lee, C. S. & Cho, S. B., 2018 Jan 1, International Joint Conference SOCO’17- CISIS’17-ICEUTE’17, Proceedings. Springer Verlag, p. 557-566 10 p. (Advances in Intelligent Systems and Computing; vol. 649).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Intrusion detection
Classifiers
Supervised learning
Reinforcement learning
Evolutionary algorithms

Learning Optimal Q-Function Using Deep Boltzmann Machine for Reliable Trading of Cryptocurrency

Bu, S. J. & Cho, S-B., 2018 Jan 1, Intelligent Data Engineering and Automated Learning – IDEAL 2018 - 19th International Conference, Proceedings. Yin, H., Novais, P., Camacho, D. & Tallón-Ballesteros, A. J. (eds.). Springer Verlag, p. 468-480 13 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11314 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Boltzmann Machine
Q-function
Profit
Profitability
Q-learning

Locally and Globally Tuned Chaotic Biogeography-Based Optimization Algorithm

Giri, P. K., De, S. S., Dehuri, S. & Cho, S. B., 2018 Jul 31, Proceedings - 2017 International Conference on Information Technology, ICIT 2017. Institute of Electrical and Electronics Engineers Inc., p. 152-158 7 p. 8423899

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Logistics
Experimental study
Benchmark
Evaluation
Avoidance

Predicting the Household Power Consumption Using CNN-LSTM Hybrid Networks

Kim, T. Y. & Cho, S-B., 2018 Jan 1, Intelligent Data Engineering and Automated Learning – IDEAL 2018 - 19th International Conference, Proceedings. Yin, H., Novais, P., Camacho, D. & Tallón-Ballesteros, A. J. (eds.). Springer Verlag, p. 481-490 10 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11314 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Memory Term
Power Consumption
Electric power utilization
Neural Networks
Neural networks

Sensor information fusion by integrated AI to control public emotion in a cyber-physical environment

Choi, S. G. & Cho, S-B., 2018 Nov 2, In : Sensors (Switzerland). 18, 11, 3767.

Research output: Contribution to journalArticle

emotions
Information fusion
Emotions
fusion
sensors

Surrogate-Assisted Multi-objective Genetic Algorithms for Fuzzy Rule-Based Classification

Kalia, H., Dehuri, S., Ghosh, A. & Cho, S. B., 2018 Aug 1, In : International Journal of Fuzzy Systems. 20, 6, p. 1938-1955 18 p.

Research output: Contribution to journalArticle

Multi-objective Genetic Algorithm
Fuzzy rules
Fuzzy Rules
Genetic algorithms
Fuzzy Rule-based Systems
2 Citations

Web traffic anomaly detection using C-LSTM neural networks

Kim, T. Y. & Cho, S-B., 2018 Sep 15, In : Expert Systems with Applications. 106, p. 66-76 11 p.

Research output: Contribution to journalArticle

Neural networks
Network layers
Time series
Computer networks
World Wide Web
2 Citations

Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders

Kim, J. Y., Bu, S. J. & Cho, S-B., 2018 Sep 1, In : Information sciences. 460-461, p. 83-102 20 p.

Research output: Contribution to journalArticle

Software
Zero
Attack
Malware
Computer systems
2017
Bayesian networks
Sensors
Decision trees
Internet of things
3 Citations

A hybrid system of deep learning and learning classifier system for database intrusion detection

Bu, S. J. & Cho, S. B., 2017 Jan 1, Hybrid Artificial Intelligent Systems - 12th International Conference, HAIS 2017, Proceedings. Springer Verlag, p. 615-625 11 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10334 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Learning Classifier Systems
Intrusion detection
Intrusion Detection
Hybrid systems
Hybrid Systems

An agent-based system for abnormal flow detection in semiconductor production line

Lee, D. C. & Cho, S. B., 2017 Dec 13, ICCAS 2017 - 2017 17th International Conference on Control, Automation and Systems - Proceedings. IEEE Computer Society, Vol. 2017-October. p. 2015-2020 6 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Semiconductor materials
Quality control
Accidents
Managers
Automation
1 Citations

Dempster-Shafer Fusion of Semi-supervised Learning Methods for Predicting Defaults in Social Lending

Kim, A. & Cho, S. B., 2017 Jan 1, Neural Information Processing - 24th International Conference, ICONIP 2017, Proceedings. Springer Verlag, p. 854-862 9 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10635 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Semi-supervised Learning
Supervised learning
Labeling
Fusion
Fusion reactions

Despeckling with structure preservation in clinical ultrasound images using historical edge information weighted regularizer

Roy, R., Ghosh, S., Cho, S. B. & Ghosh, A., 2017 Jan 1, Mining Intelligence and Knowledge Exploration - 5th International Conference, MIKE 2017, Proceedings. Springer Verlag, Vol. 10682 LNAI. p. 144-155 12 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10682 LNAI).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ultrasound Image
Preservation
Ultrasonics
Timestamp
Qualitative Analysis
1 Citations

Ensemble bayesian networks evolved with speciation for high-performance prediction in data mining

Kim, K. J. & Cho, S-B., 2017 Feb 1, In : Soft Computing. 21, 4, p. 1065-1080 16 p.

Research output: Contribution to journalArticle

Speciation
Performance Prediction
Bayesian networks
Bayesian Networks
Data mining
3 Citations

Malware detection using deep transferred generative adversarial networks

Kim, J. Y., Bu, S. J. & Cho, S. B., 2017 Jan 1, Neural Information Processing - 24th International Conference, ICONIP 2017, Proceedings. Springer Verlag, p. 556-564 9 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10634 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Malware
Software
Detector
Detectors
Learning algorithms
3 Citations

Modular bayesian networks with low-power wearable sensors for recognizing eating activities

Kim, K. H. & Cho, S-B., 2017 Dec 11, In : Sensors (Switzerland). 17, 12, 2877.

Research output: Contribution to journalArticle

eating
Bayesian networks
Eating
Value of Life
Smartphones

Offensive Sentence Classification Using Character-Level CNN and Transfer Learning with Fake Sentences

Seo, S. & Cho, S. B., 2017 Jan 1, Neural Information Processing - 24th International Conference, ICONIP 2017, Proceedings. Springer Verlag, p. 532-539 8 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10635 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Transfer Learning
Convolution
Neural Networks
Neural networks
Shortage
10 Citations
Smartphones
Hidden Markov models
Classifiers
Gyroscopes
Sensors
2 Citations

Stochastic and non-stochastic feature selection

Tallón-Ballesteros, A. J., Correia, L. & Cho, S. B., 2017 Jan 1, Intelligent Data Engineering and Automated Learning – IDEAL 2017 - 18th International Conference, Proceedings. Springer Verlag, p. 592-598 7 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10585 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Feature Selection
Feature extraction
Wrapper
Taxonomies
Taxonomy
1 Citations

Visual tools to lecture data analytics and engineering

Cho, S. B. & Tallón-Ballesteros, A. J., 2017 Jan 1, Natural and Artificial Computation for Biomedicine and Neuroscience - International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Proceedings. Springer Verlag, Vol. 10338 LNCS. p. 551-558 8 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10338 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Engineering
Data mining
Learning systems
Data Mining
Machine Learning
2016

A context-aware keyboard generator for smartphone using random forest and rule-based system

Jo, S. M. & Cho, S. B., 2016 Jan 1, Hybrid Artificial Intelligent Systems - 11th International Conference, HAIS 2016, Proceedings. Springer Verlag, Vol. 9648. p. 91-101 11 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 9648).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Rule-based Systems
Random Forest
Smartphones
Knowledge based systems
Context-aware

A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects

Cacha, L. A., Parida, S., Dehuri, S., Cho, S. B. & Poznanski, R. R., 2016 Dec 1, In : Journal of Integrative Neuroscience. 15, 4, p. 593-606 14 p.

Research output: Contribution to journalArticle

Magnetic Resonance Imaging
Brain

A group emotion control system based on reinforcement learning

Kim, K. H. & Cho, S-B., 2016 Jun 15, Proceedings of the 2015 7th International Conference of Soft Computing and Pattern Recognition, SoCPaR 2015. Koppen, M., Muda, A. K., Ma, K., Xue, B., Takagi, H. & Abraham, A. (eds.). Institute of Electrical and Electronics Engineers Inc., p. 303-307 5 p. 7492826

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Reinforcement learning
Ubiquitous computing
Reinforcement Learning
Control System
Control systems
2 Citations

A hybrid approach to human posture classification during TV watching

Chan, J. H., Visutarrom, T., Cho, S. B., Engchuan, W., Mongolnam, P. & Fong, S., 2016 Aug 1, In : Journal of Medical Imaging and Health Informatics. 6, 4, p. 1119-1126 8 p.

Research output: Contribution to journalArticle

Posture
Benchmarking
Television
Skeleton
Research
2 Citations

A modular approach to landmark detection based on a Bayesian network and categorized context logs

Lim, S., Lee, S. H. & Cho, S. B., 2016 Jan 1, In : Information Sciences. 330, p. 145-156 12 p.

Research output: Contribution to journalArticle

Bayesian networks
Landmarks
Bayesian Networks
Data storage equipment
Datalog

Analysis of an intention-response model inspired by brain nervous system for cognitive robot

Yu, J. M. & Cho, S. B., 2016 Jan 1, Neural Information Processing - 23rd International Conference, ICONIP 2016, Proceedings. Springer Verlag, Vol. 9947 LNCS. p. 168-176 9 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 9947 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Neurology
Neurons
Brain
Mirrors
Robot
10 Citations

Anomalous query access detection in RBAC-administered databases with random forest and PCA

Ronao, C. A. & Cho, S. B., 2016 Nov 10, In : Information Sciences. 369, p. 238-250 13 p.

Research output: Contribution to journalArticle

Role-based Access Control
Random Forest
Access control
Principal component analysis
Principal Component Analysis
2 Citations

A sensory control system for adjusting group emotion using Bayesian networks and reinforcement learning

Kim, J. H., Kim, K. H. & Cho, S-B., 2016 Jan 1, Hybrid Artificial Intelligent Systems - 11th International Conference, HAIS 2016, Proceedings. Martinez-Alvarez, F., Troncoso, A., Quintian, H. & Corchado, E. (eds.). Springer Verlag, p. 377-388 12 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 9648).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Reinforcement learning
Bayesian networks
Reinforcement Learning
Bayesian Networks
Control System

Automatic generation of GUI for smartphone IME by classifying user behavior patterns

Jo, S. M. & Cho, S. B., 2016 Jun 15, Proceedings of the 2015 7th International Conference of Soft Computing and Pattern Recognition, SoCPaR 2015. Institute of Electrical and Electronics Engineers Inc., p. 294-297 4 p. 7492824

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Computer keyboards
Smartphones
User Behavior
Graphical user interfaces
Decision trees
3 Citations

Design of self-adaptive and equilibrium differential evolution optimized radial basis function neural network classifier for imputed database

Dash, C. S. K., Saran, A., Sahoo, P., Dehuri, S. & Cho, S-B., 2016 Sep 1, In : Pattern Recognition Letters. 80, p. 76-83 8 p.

Research output: Contribution to journalArticle

Classifiers
Neural networks
Learning systems
18 Citations

Exploiting machine learning techniques for location recognition and prediction with smartphone logs

Cho, S-B., 2016 Feb 2, In : Neurocomputing. 176, p. 98-106 9 p.

Research output: Contribution to journalArticle

Smartphones
Learning systems
Location based services
Decision Trees
Research Personnel
113 Citations

Human activity recognition with smartphone sensors using deep learning neural networks

Ronao, C. A. & Cho, S-B., 2016 Oct 15, In : Expert Systems with Applications. 59, p. 235-244 10 p.

Research output: Contribution to journalArticle

Smartphones
Neural networks
Time series
Sensors
Fast Fourier transforms
6 Citations

Integration of fuzzy Markov random field and local information for separation of moving objects and shadows

Subudhi, B. N., Ghosh, S., Cho, S-B. & Ghosh, A., 2016 Jan 1, In : Information sciences. 331, p. 15-31 17 p.

Research output: Contribution to journalArticle

Moving Objects
Random Field
Pixels
Fuzzy clustering
Pixel
4 Citations

Layered hidden Markov models to recognize activity with built-in sensors on Android smartphone

Lee, Y. S. & Cho, S-B., 2016 Nov 1, In : Pattern Analysis and Applications. 19, 4, p. 1181-1193 13 p.

Research output: Contribution to journalArticle

Smartphones
Hidden Markov models
Sensors
Mobile phones
Health care
1 Citations

On the mining of fuzzy association rule using multiobjective genetic algorithms

Kalia, H., Dehuri, S., Ghosh, A. & Cho, S-B., 2016 Jan 1, In : International Journal of Data Mining, Modelling and Management. 8, 1, p. 1-31 31 p.

Research output: Contribution to journalArticle

Fuzzy Association Rules
Multi-objective Genetic Algorithm
Association Rule Mining
Association rules
Fuzzy Sets

Opening remarks

Nagaraja, C., Swamy, J. N., Rajendra, J., Khan, M. S., Vishwanath, Reddy, D. S., Manjunath, N., Dillmann, R., Tarn, T. J., Zhao, Q., Ammi, M., Zuberek, W. M., Sandhu, P. S., Patthira, Newman, K., De Silva Liyanage, C., Hassan, S. A. A., Sun, K. W., Rahman, M. M., Ordoño, E. E. & 63 othersSharma, R. K., Mishra, P., Chandel, B. S., Singla, E., Petric, T., Zhong, Y., Jiglar, J., Alemzadeh, K., Asokan, T., Tripathi, A., Tripathi, M., Ram, S., Shrma, M. K., Panday, P. N., Kumar, D., Hinchey, M., Stilman, B., Suraj, Z., Pal, S. K., Sasi, S., Rajan, D., Marshall, R. G., Abraham, A., Peter S, D., Paul, V., Gopakumar, V., Dustdar, S., Soto, S. V., Rausch, A., Angelis, L., Nelson, A. L., Botzheim, J., Bernardino, H. S., Zboril, F., Ane, B. K., Maeda, T., Sakalauskas, V., Hann, G. L. K., Samek, J., Romero Salguero, J. R., Varghese, K., Kriksciuniene, D., Mathew, J., Reif, W., Mauri, G., Cabrerizo Lorite, F. J., Özcan, E., Cho, S-B., Paily, R. P., Rezankova, H., Tudjarov, B., Hong, W. C., De Oliveira, J. V., Flores Romero, J. J., Oskouei, R. J., Cicchetti, A., Roy, C., Segura, S., Samuel, C., Mallet, F., Mernik, M., Punnekkat, S. & Waseemulla, A., 2016 Apr 7, In : 2016 International Conference on Advances in Human Machine Interaction, HMI 2016. 7449159.

Research output: Contribution to journalEditorial