4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2

Seung il Choi, Eunhee Lee, Jang Bin Jeong, Begum Akuzum, Yong Sun Maeng, Tae-im Kim, Eungkweon Kim

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and that the effects of 4-PBA treatment might have important implications for the development of GCD2 therapeutics.

Original languageEnglish
Pages (from-to)841-846
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume477
Issue number4
DOIs
Publication statusPublished - 2016 Sep 2

Fingerprint

Endoplasmic Reticulum-Associated Degradation
Endoplasmic Reticulum Stress
Fibroblasts
Chemical activation
Proteins
eIF-2 Kinase
Inositol
Cell death
Endoplasmic Reticulum
Immunoglobulins
Carrier Proteins
Activating Transcription Factor 4
Phosphotransferases
Protein Disulfide-Isomerases
Degradation
Phosphorylation
Proteasome Inhibitors
Double-Stranded RNA
Corneal dystrophy Avellino type
betaIG-H3 protein

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{48faecab24954a288d7fd4b9a39612a0,
title = "4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2",
abstract = "Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and that the effects of 4-PBA treatment might have important implications for the development of GCD2 therapeutics.",
author = "Choi, {Seung il} and Eunhee Lee and Jeong, {Jang Bin} and Begum Akuzum and Maeng, {Yong Sun} and Tae-im Kim and Eungkweon Kim",
year = "2016",
month = "9",
day = "2",
doi = "10.1016/j.bbrc.2016.06.146",
language = "English",
volume = "477",
pages = "841--846",
journal = "Biochemical and Biophysical Research Communications",
issn = "0006-291X",
publisher = "Academic Press Inc.",
number = "4",

}

4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2. / Choi, Seung il; Lee, Eunhee; Jeong, Jang Bin; Akuzum, Begum; Maeng, Yong Sun; Kim, Tae-im; Kim, Eungkweon.

In: Biochemical and Biophysical Research Communications, Vol. 477, No. 4, 02.09.2016, p. 841-846.

Research output: Contribution to journalArticle

TY - JOUR

T1 - 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2

AU - Choi, Seung il

AU - Lee, Eunhee

AU - Jeong, Jang Bin

AU - Akuzum, Begum

AU - Maeng, Yong Sun

AU - Kim, Tae-im

AU - Kim, Eungkweon

PY - 2016/9/2

Y1 - 2016/9/2

N2 - Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and that the effects of 4-PBA treatment might have important implications for the development of GCD2 therapeutics.

AB - Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and that the effects of 4-PBA treatment might have important implications for the development of GCD2 therapeutics.

UR - http://www.scopus.com/inward/record.url?scp=84979656117&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84979656117&partnerID=8YFLogxK

U2 - 10.1016/j.bbrc.2016.06.146

DO - 10.1016/j.bbrc.2016.06.146

M3 - Article

C2 - 27373828

AN - SCOPUS:84979656117

VL - 477

SP - 841

EP - 846

JO - Biochemical and Biophysical Research Communications

JF - Biochemical and Biophysical Research Communications

SN - 0006-291X

IS - 4

ER -