A Brand New Dance Partner: Music-Conditioned Pluralistic Dancing Controlled by Multiple Dance Genres

Jinwoo Kim, Heeseok Oh, Seongjean Kim, Hoseok Tong, Sanghoon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

When coming up with phrases of movement, choreographers all have their habits as they are used to their skilled dance genres. Therefore, they tend to return certain patterns of the dance genres that they are familiar with. What if artificial intelligence could be used to help choreographers blend dance genres by suggesting various dances, and one that matches their choreographic style? Numerous task-specific variants of autoregressive networks have been developed for dance generation. Yet, a serious limitation remains that all existing algorithms can return repeated patterns for a given initial pose sequence, which may be inferior. To mitigate this issue, we propose MNET, a novel and scalable approach that can perform music-conditioned pluralistic dance generation synthesized by multiple dance genres using only a single model. Here, we learn a dancegenre aware latent representation by training a conditional generative adversarial network leveraging Transformer architecture. We conduct extensive experiments on AIST++ along with user studies. Compared to the state-of-the-art methods, our method synthesizes plausible and diverse outputs according to multiple dance genres as well as generates outperforming dance sequences qualitatively and quantitatively.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages3480-3490
Number of pages11
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 2022 Jun 192022 Jun 24

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period22/6/1922/6/24

Bibliographical note

Funding Information:
Acknowledgment. This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C3011697) and the Yonsei University Research Fund of 2021 (2021-22-0001).

Publisher Copyright:
© 2022 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'A Brand New Dance Partner: Music-Conditioned Pluralistic Dancing Controlled by Multiple Dance Genres'. Together they form a unique fingerprint.

Cite this