A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution

J. He, N. Mattern, J. Tan, J. Z. Zhao, I. Kaban, Z. Wang, L. Ratke, D. H. Kim, W. T. Kim, J. Eckert

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

The Zr-Ce-La system is characterized by a miscibility gap and a monotectic reaction. It separates into Zr-rich and CeLa-rich liquids upon cooling through the gap. Based on this system, a new Zr-Ce-La-Al-Co monotectic system was created to synthesize liquid-phase-separated bulk metallic glasses (LPS-BMGs) by copper mold casting. A systematical investigation was performed for the effects of the relative atomic ratios of Zr:CeLa, Co:Al and Ce:La on the microstructure features and chemical compositions of the two coexistent phases. Dual atom pairs with positive heat of mixing (Zr-Ce: +12 kJ mol-1 and Zr-La: +13 kJ mol-1) are originally adopted to develop such LPS-BMGs. A series of in situ formed LPS-BMGs with a critical thickness of 2.5 mm has been successfully synthesized. By combining the kinetics of liquid-liquid phase separation with the formation of metallic glasses, the mechanisms of phase formation and the microstructure evolution in the rapidly cooled alloys are discussed in detail. Furthermore, a thermodynamic model is proposed for LPS-BMG design, attempting to build a bridge from monotectic/immiscible (M/I) alloys to LPS-BMGs. This work not only provides opportunities for new insights into the synthesis of LPS-BMGs and their properties but also opens new perspectives for processing and research of M/I alloys.

Original languageEnglish
Pages (from-to)2102-2112
Number of pages11
JournalActa Materialia
Volume61
Issue number6
DOIs
Publication statusPublished - 2013 Apr

Bibliographical note

Funding Information:
The authors thank B. Bartusch, S. Donath, M. Frey, B. Opitz and H.X. Jiang for technical support. Helpful discussions with Prof. F.P. Dai, Dr. Y. Zhang, Dr. B.A. Sun and K.K. Song are gratefully acknowledged. Support from the Alexander von Humboldt Foundation, the National Natural Science Foundation (NNSF) of China (Grant No. 51271185 , 51031003 , 51071159 ), and the Global Research Laboratory Program of the Korean Ministry of Education, Science and Technology is gratefully acknowledged.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution'. Together they form a unique fingerprint.

Cite this