A facile chemical synthesis of ZnO@multilayer graphene nanoparticles with fast charge separation and enhanced performance for application in solar energy conversion

Jaeho Shim, Jung Kyu Kim, Kyu Seung Lee, Chang Lyoul Lee, Ming Ma, Won Kook Choi, Jun Yeon Hwang, Hee Yeon Yang, Basavaraj Angadi, Jong Hyeok Park, Kyoungsik Yu, Dong Ick Son

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

This work reports on the in-situ chemical synthesis and their properties of multilayer graphene (MLG) shells, made by unzipping single walled carbon nanotubes (SWCNTs), on the surface of Zinc oxide (ZnO) core nanoparticles (NPs). The stable oxygen bridge bonds between the ZnO core and the oxygen-related functional groups on the MLG shells facilitate the efficient photoinduced charge separation. This charge separation mechanism is confirmed experimentally using time-correlated single photon counting (TCSPC) measurements. The calculated average carrier lifetimes of the ZnO@MLG NPs are approximately 102 times faster than those for the bare ZnO NPs. The efficient electron transfer between the ZnO core and the MLG shell resulted in the significant improvement of the photocatalytic activity and the photoelectrochemical response. Simultaneously, the photocorrosion of ZnO was prevented by having the oxygen bridge bonds between the ZnO and MLG which suppressed the photo-generated holes oxidizing the surface oxygen atoms on ZnO, and in turn the holes are consumed by photocatalytic reaction. The 4.3 times enhanced photocurrent density at 0.2 V vs. Ag/AgCl (pH 6.9) and around 10 times higher rate constant value of photodegradation of rhodamine B were achieved by ZnO@MLG NPs in comparison with those of bare ZnO NPs.

Original languageEnglish
Pages (from-to)9-17
Number of pages9
JournalNano Energy
Volume25
DOIs
Publication statusPublished - 2016 Jul 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)
  • Electrical and Electronic Engineering

Cite this