TY - JOUR
T1 - A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current
AU - Shin, Sangwoo
AU - Kim, Beom Seok
AU - Song, Jiwoon
AU - Lee, Hwanseong
AU - Cho, Hyung Hee
PY - 2012/7/21
Y1 - 2012/7/21
N2 - Active modulation of ions and molecules via field-effect gating in nanofluidic channels is a crucial technology for various promising applications such as DNA sequencing, drug delivery, desalination, and energy conversion. Developing a rapid and facile fabrication method for ionic field-effect transistors (FET) over a large area may offer exciting opportunities for both fundamental research and innovative applications. Here, we report a rapid, cost-effective route for the fabrication of large-scale nanofluidic field-effect transistors using a simple, lithography-free two-step fabrication process that consists of sputtering and barrier-type anodization. A robust alumina gate dielectric layer, which is formed by anodizing sputtered aluminium, can be rapidly fabricated in the order of minutes. When anodizing aluminium, we employ a hemispherical counter electrode in order to give a uniform electric field that encompasses the whole sputtered aluminium layer which has high surface roughness. In consequence, a well-defined thin layer of alumina with perfect step coverage is formed on a highly rough aluminium surface. A gate-all-around nanofluidic FET with a leak-free gate dielectric exhibits outstanding gating performance despite a large channel size. The thin and robust anodized alumina gate dielectric plays a crucial role in achieving such excellent capacitive coupling. The combination of a gate-all-around structure with a leak-free gate dielectric over a large area could yield breakthroughs in areas ranging from biotechnology to energy and environmental applications.
AB - Active modulation of ions and molecules via field-effect gating in nanofluidic channels is a crucial technology for various promising applications such as DNA sequencing, drug delivery, desalination, and energy conversion. Developing a rapid and facile fabrication method for ionic field-effect transistors (FET) over a large area may offer exciting opportunities for both fundamental research and innovative applications. Here, we report a rapid, cost-effective route for the fabrication of large-scale nanofluidic field-effect transistors using a simple, lithography-free two-step fabrication process that consists of sputtering and barrier-type anodization. A robust alumina gate dielectric layer, which is formed by anodizing sputtered aluminium, can be rapidly fabricated in the order of minutes. When anodizing aluminium, we employ a hemispherical counter electrode in order to give a uniform electric field that encompasses the whole sputtered aluminium layer which has high surface roughness. In consequence, a well-defined thin layer of alumina with perfect step coverage is formed on a highly rough aluminium surface. A gate-all-around nanofluidic FET with a leak-free gate dielectric exhibits outstanding gating performance despite a large channel size. The thin and robust anodized alumina gate dielectric plays a crucial role in achieving such excellent capacitive coupling. The combination of a gate-all-around structure with a leak-free gate dielectric over a large area could yield breakthroughs in areas ranging from biotechnology to energy and environmental applications.
UR - http://www.scopus.com/inward/record.url?scp=84862874772&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862874772&partnerID=8YFLogxK
U2 - 10.1039/c2lc40112f
DO - 10.1039/c2lc40112f
M3 - Article
C2 - 22584915
AN - SCOPUS:84862874772
VL - 12
SP - 2568
EP - 2574
JO - Lab on a Chip - Miniaturisation for Chemistry and Biology
JF - Lab on a Chip - Miniaturisation for Chemistry and Biology
SN - 1473-0197
IS - 14
ER -