Abstract
A new design of flexible energy harvester to utilize piezoelectric and electrostatic energy conversion mechanisms simultaneously from a single mechanical energy source is proposed. This non-resonant type harvester enables low-frequency mechanical inputs to be converted to electricity, and the polymeric structures make the harvester mechanically flexible, allowing it to be applied to non-planar surfaces. The fabricated harvester generated peak- and average power densities of 159 and 1.79 μW cm-2 respectively by piezoelectric conversion, and 52.9 μW cm-2 and 1.59 nW cm -2 respectively by electrostatic conversion from an input force of 1.2 N at 3 Hz. Considering its flexibility and ability to harvest mechanical inputs at frequencies below 3 Hz, low-frequency human movements could be a potential energy source for the proposed hybrid harvester to exploit.
Original language | English |
---|---|
Article number | 045040 |
Journal | Smart Materials and Structures |
Volume | 23 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2014 Apr |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering