A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects

L. A. Cacha, S. Parida, S. Dehuri, S. B. Cho, R. R. Poznanski

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.

Original languageEnglish
Pages (from-to)593-606
Number of pages14
JournalJournal of Integrative Neuroscience
Volume15
Issue number4
DOIs
Publication statusPublished - 2016 Dec 1

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects'. Together they form a unique fingerprint.

  • Cite this