Abstract
This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.
Original language | English |
---|---|
Pages (from-to) | 518-523 |
Number of pages | 6 |
Journal | Journal of Institute of Control, Robotics and Systems |
Volume | 21 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2015 Jan 1 |
Bibliographical note
Publisher Copyright:© ICROS 2015.
All Science Journal Classification (ASJC) codes
- Software
- Control and Systems Engineering
- Applied Mathematics