A general forcefield for accurate phonon properties of metal-organic frameworks

Jessica K. Bristow, Jonathan M. Skelton, Katrine L. Svane, Aron Walsh, Julian D. Gale

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

We report the development of a forcefield capable of reproducing accurate lattice dynamics of metal-organic frameworks. Phonon spectra, thermodynamic and mechanical properties, such as free energies, heat capacities and bulk moduli, are calculated using the quasi-harmonic approximation to account for anharmonic behaviour due to thermal expansion. Comparison to density functional theory calculations of properties such as Grüneisen parameters, bulk moduli and thermal expansion supports the accuracy of the derived forcefield model. Material properties are also reported in a full analysis of the lattice dynamics of an initial subset of structures including: MOF-5, IRMOF-10, UiO-66, UiO-67, NOTT-300, MIL-125, MOF-74 and MOF-650.

Original languageEnglish
Pages (from-to)29316-29329
Number of pages14
JournalPhysical Chemistry Chemical Physics
Volume18
Issue number42
DOIs
Publication statusPublished - 2016

Bibliographical note

Funding Information:
J. K. B. is funded by the EPSRC (Grant no. EP/G03768X/1). J. D. G. thanks the Australian Research Council for funding under the Discovery Programme, as well as the Pawsey Supercomputing Centre and NCI for the provision of computing resources. A. W. acknowledges support from the Royal Society University Research Fellowship scheme. K. L. S. is funded under ERC Starting Grant 277757 and J. M. S. is funded under EPSRC Grant no. EP/K004956/1. The work benefited from the high performance computing facility, Balena, at the University of Bath, and access to the ARCHER supercomputer through membership of the HPC Materials Chemistry Consortium (EP/L000202).

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'A general forcefield for accurate phonon properties of metal-organic frameworks'. Together they form a unique fingerprint.

Cite this