A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

Ranjeet S. Sokhi, Vikas Singh, Xavier Querol, Sandro Finardi, Admir Créso Targino, Maria de Fatima Andrade, Radenko Pavlovic, Rebecca M. Garland, Jordi Massagué, Shaofei Kong, Alexander Baklanov, Lu Ren, Oksana Tarasova, Greg Carmichael, Vincent Henri Peuch, Vrinda Anand, Graciela Arbilla, Kaitlin Badali, Gufran Beig, Luis Carlos BelalcazarAndrea Bolignano, Peter Brimblecombe, Patricia Camacho, Alejandro Casallas, Jean Pierre Charland, Jason Choi, Eleftherios Chourdakis, Isabelle Coll, Marty Collins, Josef Cyrys, Cleyton Martins da Silva, Alessandro Domenico Di Giosa, Anna Di Leo, Camilo Ferro, Mario Gavidia-Calderon, Amiya Gayen, Alexander Ginzburg, Fabrice Godefroy, Yuri Alexandra Gonzalez, Marco Guevara-Luna, Sk Mafizul Haque, Henno Havenga, Dennis Herod, Urmas Hõrrak, Tareq Hussein, Sergio Ibarra, Monica Jaimes, Marko Kaasik, Ravindra Khaiwal, Jhoon Kim, Anu Kousa, Jaakko Kukkonen, Markku Kulmala, Joel Kuula, Nathalie La Violette, Guido Lanzani, Xi Liu, Stephanie MacDougall, Patrick M. Manseau, Giada Marchegiani, Brian McDonald, Swasti Vardhan Mishra, Luisa T. Molina, Dennis Mooibroek, Suman Mor, Nicolas Moussiopoulos, Fabio Murena, Jarkko V. Niemi, Steffen Noe, Thiago Nogueira, Michael Norman, Juan Luis Pérez-Camaño, Tuukka Petäjä, Stuart Piketh, Aditi Rathod, Ken Reid, Armando Retama, Olivia Rivera, Néstor Y. Rojas, Jhojan P. Rojas-Quincho, Roberto San José, Odón Sánchez, Rodrigo J. Seguel, Salla Sillanpää, Yushan Su, Nigel Tapper, Antonio Terrazas, Hilkka Timonen, Domenico Toscano, George Tsegas, Guus J.M. Velders, Christos Vlachokostas, Erika von Schneidemesser, Rajasree VPM, Ravi Yadav, Rasa Zalakeviciute, Miguel Zavala

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.

Original languageEnglish
Article number106818
JournalEnvironment international
Volume157
DOIs
Publication statusPublished - 2021 Dec

Bibliographical note

Funding Information:
Russian Foundation for Basic Research (project 20–05–00254)

Funding Information:
This project has received funding from the European Commission’s Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project).

Funding Information:
Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein.

Funding Information:
European network for observing our changing planet project (ERA-PLANET, grant agreement no. 689443) under the European Union’s Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395).

Funding Information:
INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008).

Funding Information:
Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus.

Funding Information:
Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government;

Funding Information:
Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1;

Funding Information:
World Meteorological Organization Global Atmospheric Watch programme is gratefully acknowledged for initiating and coordinating this study and for supporting this publication. We acknowledge the following projects for supporting the analysis contained in this article:, Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1;, Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein. This project has received funding from the European Commission's Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project). European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme;, Estonian Research Council (project PRG714);, Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (KKOBS, project 2014-2020.4.01.20-0281). European network for observing our changing planet project (ERA-PLANET, grant agreement no. 689443) under the European Union's Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395). Eastern Mediterranean and Middle East?Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus. INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to data used in our analysis:, A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences;, Agenzia Regionale per la Protezione dell'Ambiente della Campania (ARPAC);, Air Quality and Climate Change, Parks and Environment (MetroVancouver, Government of British Columbia);, Air Quality Monitoring & Reporting, Nova Scotia Environment (Government of Nova Scotia);, Air Quality Monitoring Network (SIMAT) and Emission Inventory, Mexico City Environment Secretariat (SEDEMA);, Airparif (owner & provider of the Paris air pollution data);, ARPA Lazio, Italy;, ARPA Lombardia, Italy;, Association Agr??e de Surveillance de la Qualit? de l'Air en ?le-de-France AIRPARIF / Atmo-France;, Bavarian Environment Agency, Germany;, Berlin Senatsverwaltung f?r Umwelt, Verkehr und Klimaschutz, Germany;, California Air Resources Board;, Central Pollution Control Board (CPCB), India;, CETESB: Companhia Ambiental do Estado de S?o Paulo, Brazil. China National Environmental Monitoring Centre;, Chandigarh Pollution Control Committee (CPCC), India. DCMR Rijnmond Environmental Service, the Netherlands. Department of Labour Inspection, Cyprus;, Department of Natural Resources Management and Environmental Protection of Moscow. Environment and Climate Change Canada;, Environmental Monitoring and Science Division Alberta Environment and Parks (Government of Alberta);, Environmental Protection Authority Victoria (Melbourne, Victoria, Australia);, Estonian Environmental Research Centre (EERC);, Estonian University of Life Sciences, SMEAR Estonia;, European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme;, Finnish Meteorological Institute;, Helsinki Region Environmental Services Authority;, Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government;, Madrid Municipality;, Met Office Integrated Data Archive System (MIDAS);, Meteorological Service of Canada;, Minist?re de l'Environnement et de la Lutte contre les changements climatiques (Gouvernement du Qu?bec);, Ministry of Environment and Energy, Greece;, Ministry of the Environment (Chile) and National Weather Service (DMC);, Moscow State Budgetary Environmental Institution MOSECOMONITORING. Municipal Department of the Environment SMAC, Brazil;, Municipality of Madrid public open data service;, National institute of environmental research, Korea;, National Meteorology and Hydrology Service (SENAMHI), Peru;, New York State Department of Environmental Conservation;, NSW Department of Planning, Industry and Environment;, Ontario Ministry of the Environment, Conservation and Parks, Canada;, Public Health Service of Amsterdam (GGD), the Netherlands. Punjab Pollution Control Board (PPCB), India. R?seau de surveillance de la qualit? de l'air (RSQA) (Montr?al);, Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics, Russia;, Russian Foundation for Basic Research (project 20?05?00254), SAFAR-IITM-MoES, India;, S?o Paulo State Environmental Protection Agency, CETESB;, Secretaria de Ambiente, DMQ, Ecuador;, Secretar?a Distrital de Ambiente, Bogot?, Colombia. Secretaria Municipal de Meio Ambiente Rio de Janeiro;, Mexico City Atmospheric Monitoring System (SIMAT); Mexico City Secretariat of Environment, Secretar?a del Medio Ambiente (SEDEMA);, SLB-analys, Sweden;, SMEAR Estonia station and Estonian University of Life Sciences (EULS);, SMEAR stations data and Finnish Center of Excellence;, South African Weather Service and Department of Environment, Forestry and Fisheries through SAAQIS;, Spanish Ministry for the Ecological Transition and the Demographic Challenge (MITECO);, University of Helsinki, Finland;, University of Tartu, Tahkuse air monitoring station;, Weather Station of the Institute of Astronomy, Geophysics and Atmospheric Science of the University of S?o Paulo;, West Bengal Pollution Control Board (WBPCB).

Funding Information:
European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme;

Publisher Copyright:
© 2021

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)

Fingerprint

Dive into the research topics of 'A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions'. Together they form a unique fingerprint.

Cite this