A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer

Kwang Lee, Jung Dong Kim, Chang Yoel Lee, Song Her, Hyungil Jung

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Cutaneous gene transfer is limited by biological barriers such as skin and cellular membranes; complex approaches are required to overcome these biological barriers, simultaneously. Non-integrated systems that separate cutaneous permeation from intracellular transfection have been used to overcome skin and cellular barriers, respectively, however, do not provide sufficient doses of the gene to local tissue, resulting in inefficient gene transfer in-situ. Although integrated systems for cutaneous gene transfer are available, their safety has been questioned and it is difficult to transfer sufficient amounts of genes due to cumbersome sterilization procedures and the small size of the reservoir. Here, we demonstrate stepwise-aligned cutaneous permeation, cutaneous release, and intracellular transfection using a hybrid electro-microneedle (HEM), which designed as a monolithic hybrid assembly of a dissolving microneedle and an electrode, anomalously. Furthermore, as proof-of-principle, we use the HEM for in-situ cutaneous transfer of p2CMVmIL-12 to successfully treat B16F10 subcutaneous tumors in a mouse model. The HEM described herein holds great promise for cutaneous gene therapy of cancers and for vaccines.

Original languageEnglish
Pages (from-to)7705-7710
Number of pages6
JournalBiomaterials
Volume32
Issue number30
DOIs
Publication statusPublished - 2011 Oct

Bibliographical note

Funding Information:
We gratefully acknowledge the financial support of the Seoul R&BD Program (SS100001) and the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology ( 2010-0020772 ).

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer'. Together they form a unique fingerprint.

Cite this