A high-stringency blueprint of the human proteome

Subash Adhikari, Edouard C. Nice, Eric W. Deutsch, Lydie Lane, Gilbert S. Omenn, Stephen R. Pennington, Young Ki Paik, Christopher M. Overall, Fernando J. Corrales, Ileana M. Cristea, Jennifer E. Van Eyk, Mathias Uhlén, Cecilia Lindskog, Daniel W. Chan, Amos Bairoch, James C. Waddington, Joshua L. Justice, Joshua LaBaer, Henry Rodriguez, Fuchu HeMarkus Kostrzewa, Peipei Ping, Rebekah L. Gundry, Peter Stewart, Sanjeeva Srivastava, Sudhir Srivastava, Fabio C.S. Nogueira, Gilberto B. Domont, Yves Vandenbrouck, Maggie P.Y. Lam, Sara Wennersten, Juan Antonio Vizcaino, Marc Wilkins, Jochen M. Schwenk, Emma Lundberg, Nuno Bandeira, Gyorgy Marko-Varga, Susan T. Weintraub, Charles Pineau, Ulrike Kusebauch, Robert L. Moritz, Seong Beom Ahn, Magnus Palmblad, Michael P. Snyder, Ruedi Aebersold, Mark S. Baker

Research output: Contribution to journalReview articlepeer-review

94 Citations (Scopus)

Abstract

The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.

Original languageEnglish
Article number5301
JournalNature communications
Volume11
Issue number1
DOIs
Publication statusPublished - 2020 Dec 1

Bibliographical note

Funding Information:
HUPO acknowledges collaborators, proteomic scientists, independent partners, industry vendors and members of the scientific community who have contributed to the HPP. A full alphabetical listing of the Human Proteome Project members appears in the Supplementary Information. In recognition of the many accomplishments, HUPO has produced a publicly available HPP timeline available through https://hupo.org/ Proteomics-Timeline to be released with this HPP Blueprint. Parts of this work were supported by grants to ProteoRed PRB3-ISCIII, PT17/0019/0001 Comunidad de Madrid Grant B2017/BMD-3817 (F.J.C.); Korean Ministry of Health and Welfare HI13C2098 and HI16C0257 (Y.K.P.); NIH grants P30ES017885 and U24CA210967 (G.S.O.), 5U01HL-13104204, PADOM-SPO11347 and PARYB-SPO112285 (M.P.S.); NCI CPTAC U24CA210985 and NCI EDRN U24CA115102 (D.W.C.); NIH National Institute of General Medical Sciences R01GM087221 (E.W.D./R.L.M.) and R24GM127667 (E.W.D.); NIH National Institute on Aging U19AG023122 (R.L.M.); NSF DBI-1933311 (E.W.D.); CIHR COVID-19 Rapid Research Funding (F20-01013), CIHR Foundation Grant FDN:14840 and Canada Research Chair (C.M.O.); Investissement d’Avenir Infrastructures Nationales en Biologie et Santé ANR-10-INBS-08 (Proteomics French Infrastructure ProFI (Y.V.); Wellcome Trust WT101477MA and 208391/Z/17/Z (J.A.V.); Knut and Alice Wallenberg Foundation (M.U., C.L., J.M.S., E.L.); Brazilian CAPES 88887.130697, CNPq 440613/2016-7, FAPERJ E-26/210.173/2018 (G.B.D.) and FAPERJ E-26/202.650/2018 (F.C.S.N.), Australian Commonwealth NCRIS (M.S.B.); NHMRC 1010303 (M.S.B., E.C.N.); Cancer Council NSW RG19-04 (M.S.B., S.B.A., E.C.N.); Cancer Institute NSW Fellowship 15/ECF/1-38 (S.B.A.), Sydney Vital CINSW Translational Cancer Research Centre grant (M.S.B., S.B.A., S.A.), ‘Fight on the Beaches’ (M.S.B., S.B.A., E.C.N., S.A.) funding and an International Macquarie Research Excellence Scholarship (S.A.). M.S.B. thanks the Faculty of Medicine, Stanford University for a sabbatical visiting professorship.

Publisher Copyright:
© 2020, The Author(s).

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'A high-stringency blueprint of the human proteome'. Together they form a unique fingerprint.

Cite this