A lattice Boltzmann study of the non-Newtonian blood flow in stented aneurysm

Yong Hyun Kim, Sam Farhat, Xiafeng Xu, Joon Sang Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The analysis of a flow pattern in cerebral aneurysms and the effect of strut shapes and stent porosity in 2D and 3D model are presented in this paper. The efficiency of a stent is related to several parameters, including porosity and stent strut shapes. The goal of this paper is to identify numerically how the stent strut shape and the porosity affect the hemodynamics properties of the flow inside an aneurysm. The lattice Boltzmann method (LBM) of a non-Newtonian blood fluid is used. To ease the code development, a scientific programming strategy based on object-oriented concepts is developed. An extrapolation method for wall and stent boundary conditions is used to resolve the characteristics of a highly complex flow. The reduced velocity, vorticity magnitude, and shear rate were observed when the proposed stent shapes and porosities are used. The rectangular strut shape stent is observed to be optimal and decrease the magnitude of the velocity by 89.25% in 2D model and 53.92% in 3D model in the aneurysm sac. Our results show how the porosity and stent strut shapes play a role and help us to understand the characteristics of stent strut design.

Original languageEnglish
Title of host publicationTechnical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology 2008
Pages417-420
Number of pages4
Publication statusPublished - 2008
Event2008 NSTI Nanotechnology Conference and Trade Show, NSTI Nanotech 2008 Joint Meeting, Nanotechnology 2008 - Quebec City, QC, United States
Duration: 2008 Jun 12008 Jun 5

Publication series

NameTechnical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology 2008
Volume3

Other

Other2008 NSTI Nanotechnology Conference and Trade Show, NSTI Nanotech 2008 Joint Meeting, Nanotechnology 2008
Country/TerritoryUnited States
CityQuebec City, QC
Period08/6/108/6/5

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A lattice Boltzmann study of the non-Newtonian blood flow in stented aneurysm'. Together they form a unique fingerprint.

Cite this