A library of TAL effector nucleases spanning the human genome

Yongsub Kim, Jiyeon Kweon, Annie Kim, Jae Kyung Chon, Ji Yeon Yoo, Hye Joo Kim, Sojung Kim, Choongil Lee, Euihwan Jeong, Eugene Chung, Doyoung Kim, Mi Seon Lee, Eun Mi Go, Hye Jung Song, Hwangbeom Kim, Namjin Cho, Duhee Bang, Seokjoong Kim, Jin Soo Kim

Research output: Contribution to journalArticle

238 Citations (Scopus)

Abstract

Transcription activator-like (TAL) effector nucleases (TALENs) can be readily engineered to bind specific genomic loci, enabling the introduction of precise genetic modifications such as gene knockouts and additions. Here we present a genome-scale collection of TALENs for efficient and scalable gene targeting in human cells. We chose target sites that did not have highly similar sequences elsewhere in the genome to avoid off-target mutations and assembled TALEN plasmids for 18,740 protein-coding genes using a high-throughput Golden-Gate cloning system. A pilot test involving 124 genes showed that all TALENs were active and disrupted their target genes at high frequencies, although two of these TALENs became active only after their target sites were partially demethylated using an inhibitor of DNA methyltransferase. We used our TALEN library to generate single- and double-gene-knockout cells in which NF-κB signaling pathways were disrupted. Compared with cells treated with short interfering RNAs, these cells showed unambiguous suppression of signal transduction.

Original languageEnglish
Pages (from-to)251-258
Number of pages8
JournalNature Biotechnology
Volume31
Issue number3
DOIs
Publication statusPublished - 2013 Mar 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology
  • Molecular Medicine
  • Biomedical Engineering

Cite this

Kim, Y., Kweon, J., Kim, A., Chon, J. K., Yoo, J. Y., Kim, H. J., Kim, S., Lee, C., Jeong, E., Chung, E., Kim, D., Lee, M. S., Go, E. M., Song, H. J., Kim, H., Cho, N., Bang, D., Kim, S., & Kim, J. S. (2013). A library of TAL effector nucleases spanning the human genome. Nature Biotechnology, 31(3), 251-258. https://doi.org/10.1038/nbt.2517