Abstract
The mechanism of thermal stabilization of delithiated Li1-xNiO2by cobalt substitution for nickel was closely studied from the structural point of view by thermogravimetry, X-ray diffraction, and X-ray absorption analysis. Delithiated Li1-xNiO2with hexagonal (R3̄m) or monoclinic (C2/m) structure was decomposed to a spinel phase (cubic, Fd3m) at temperatures around 220°C and then converted to a rock-salt phase (cubic, Fm3m) at higher temperatures. Cobalt substitution of nickel in Li1-xNiO2stabilized the spinel phase, formed from the thermal decomposition of Li1-xNiO2, and suppressed the decomposition of this spinel phase to a rock-salt phase. While the highly delithiated Li1-xNiO2was eventually converted to a rock salt phase with NiO structure during heating, Co3O4spinel structure was locally formed around the cobalt ions in Li1-xNi0.85Co0.15O2. The improvement of the thermal stability of highly delithiated Li1-xNiO2by cobalt addition could be explained by local formation of Co3O4spinel structure around the cobalt ions in Li1-xNi0.85Co0.15O2. This spinel structure around the cobalt ions was relatively stable at high temperature and therefore, depressed the decomposition of Li1-xNiO2to a rock-salt phase.
Original language | English |
---|---|
Pages (from-to) | A1164-A1170 |
Journal | Journal of the Electrochemical Society |
Volume | 148 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2001 Oct 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry