Abstract
Nature and its highly sophisticated biomaterials are an endless source of inspiration for engineers and scientists across a wide range of disciplines. During the last decade, concepts of bioinspired synthesis of hierarchically structured nano- and micromaterials have been attracting increasing attention. In this article, we have utilized the natural ability of fungi to absorb metal ions for a bioinspired synthesis of carbonaceous material doped by selected transition metals. As an all-around metal accumulator, Hebeloma mesophaeum was selected, and it was cultivated in the presence of three transition-metal ions: Ni II , Fe II , and Mn II . The metal-doped carbonized biomaterial possessed enhanced catalytic activity toward hydrazine oxidation, oxygen reduction, and cumene hydroperoxide reduction. Thus, we have shown possible transformation of a waste product (fungi grown on a contaminated soil) into a value-added carbonaceous material with tailored catalytic properties. This bioinspired synthesis can outline an attractive route for the fabrication of catalysts for important industrial applications on a large scale.
Original language | English |
---|---|
Pages (from-to) | 3828-3834 |
Number of pages | 7 |
Journal | Chemistry - A European Journal |
Volume | 25 |
Issue number | 15 |
DOIs | |
Publication status | Published - 2019 Mar 12 |
Bibliographical note
Funding Information:This work was supported by the Advanced Functional Nanoro-bots project (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). This work was created with the financial support of the Neuron Foundation. The project was supported by Czech Science Foundation (GACR No. 16-05167S).
Publisher Copyright:
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Catalysis
- Organic Chemistry