A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts

B. Grossan, I. H. Park, S. Ahmade, K. B. Ahnf, P. Barrillone, S. Brandtg, C. Budtz-Jørgenseng, A. J. Castro-Tiradoh, P. Cheni, H. S. Choig, Y. J. Choij, P. Connellk, S. Dagoret-Campagnee, C. De La Taille, C. Eyles, I. Hermann, M. H.A. Huang, A. Jung, S. Jeong, J. E. KimM. Kim, Sug-Whan Kim, Y. W. Kim, J. Lee, H. Lim, E. V. Linder, T. C. Liu, N. Lund, K. W. Min, G. W. Na, J. W. Nam, M. I. Panasyuk, J. Ripa, V. Reglero, J. M. Rodrigo, G. F. Smoot, J. E. Suh, S. Svertilov, N. Vedenkin, M. Z. Wang, I. Yashin, M. H. Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ̃ 100 s, but cannot respond faster than ̃ 60 s. While some rapid-response ground-based telescopes have responded quickly, the number of sub-60 s detections remains small. In 2013, the Ultra-Fast Flash Observatory-Pathfinder is expected to be launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing unique capability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here we discuss the next generation of rapid-response space observatory instruments. We list science topics motivating our instruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times, measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models, internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation in the GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument and observatory design. We describe our instrument designs and choices for a next generation space observatory as a second instrument on a lowearth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass, power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidly locate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope with a beam-steering system for rapid (̃ 1 s) response and a near-IR camera should detect ̃ 29 GRB, given Swift GRB properties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowing better characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.

Original languageEnglish
Title of host publicationSpace Telescopes and Instrumentation 2012
Subtitle of host publicationUltraviolet to Gamma Ray
DOIs
Publication statusPublished - 2012 Dec 1
EventSpace Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray - Amsterdam, Netherlands
Duration: 2012 Jul 12012 Jul 6

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8443
ISSN (Print)0277-786X

Other

OtherSpace Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
CountryNetherlands
CityAmsterdam
Period12/7/112/7/6

Fingerprint

Gamma-ray Bursts
Flash
Observatories
Observatory
gamma ray bursts
Gamma rays
flash
observatories
Camera
X ray cameras
cameras
Spacecraft
Trigger
Telescopes
Telescope
Dust
actuators
dust
Cameras
Observation

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Grossan, B., Park, I. H., Ahmade, S., Ahnf, K. B., Barrillone, P., Brandtg, S., ... Zhao, M. H. (2012). A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray [84432R] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 8443). https://doi.org/10.1117/12.926391
Grossan, B. ; Park, I. H. ; Ahmade, S. ; Ahnf, K. B. ; Barrillone, P. ; Brandtg, S. ; Budtz-Jørgenseng, C. ; Castro-Tiradoh, A. J. ; Cheni, P. ; Choig, H. S. ; Choij, Y. J. ; Connellk, P. ; Dagoret-Campagnee, S. ; De La Taille, C. ; Eyles, C. ; Hermann, I. ; Huang, M. H.A. ; Jung, A. ; Jeong, S. ; Kim, J. E. ; Kim, M. ; Kim, Sug-Whan ; Kim, Y. W. ; Lee, J. ; Lim, H. ; Linder, E. V. ; Liu, T. C. ; Lund, N. ; Min, K. W. ; Na, G. W. ; Nam, J. W. ; Panasyuk, M. I. ; Ripa, J. ; Reglero, V. ; Rodrigo, J. M. ; Smoot, G. F. ; Suh, J. E. ; Svertilov, S. ; Vedenkin, N. ; Wang, M. Z. ; Yashin, I. ; Zhao, M. H. / A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts. Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. 2012. (Proceedings of SPIE - The International Society for Optical Engineering).
@inproceedings{8a806c94ed5340629a2877d5d5033190,
title = "A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts",
abstract = "The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ̃ 100 s, but cannot respond faster than ̃ 60 s. While some rapid-response ground-based telescopes have responded quickly, the number of sub-60 s detections remains small. In 2013, the Ultra-Fast Flash Observatory-Pathfinder is expected to be launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing unique capability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here we discuss the next generation of rapid-response space observatory instruments. We list science topics motivating our instruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times, measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models, internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation in the GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument and observatory design. We describe our instrument designs and choices for a next generation space observatory as a second instrument on a lowearth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass, power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidly locate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope with a beam-steering system for rapid (̃ 1 s) response and a near-IR camera should detect ̃ 29 GRB, given Swift GRB properties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowing better characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.",
author = "B. Grossan and Park, {I. H.} and S. Ahmade and Ahnf, {K. B.} and P. Barrillone and S. Brandtg and C. Budtz-J{\o}rgenseng and Castro-Tiradoh, {A. J.} and P. Cheni and Choig, {H. S.} and Choij, {Y. J.} and P. Connellk and S. Dagoret-Campagnee and {De La Taille}, C. and C. Eyles and I. Hermann and Huang, {M. H.A.} and A. Jung and S. Jeong and Kim, {J. E.} and M. Kim and Sug-Whan Kim and Kim, {Y. W.} and J. Lee and H. Lim and Linder, {E. V.} and Liu, {T. C.} and N. Lund and Min, {K. W.} and Na, {G. W.} and Nam, {J. W.} and Panasyuk, {M. I.} and J. Ripa and V. Reglero and Rodrigo, {J. M.} and Smoot, {G. F.} and Suh, {J. E.} and S. Svertilov and N. Vedenkin and Wang, {M. Z.} and I. Yashin and Zhao, {M. H.}",
year = "2012",
month = "12",
day = "1",
doi = "10.1117/12.926391",
language = "English",
isbn = "9780819491442",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
booktitle = "Space Telescopes and Instrumentation 2012",

}

Grossan, B, Park, IH, Ahmade, S, Ahnf, KB, Barrillone, P, Brandtg, S, Budtz-Jørgenseng, C, Castro-Tiradoh, AJ, Cheni, P, Choig, HS, Choij, YJ, Connellk, P, Dagoret-Campagnee, S, De La Taille, C, Eyles, C, Hermann, I, Huang, MHA, Jung, A, Jeong, S, Kim, JE, Kim, M, Kim, S-W, Kim, YW, Lee, J, Lim, H, Linder, EV, Liu, TC, Lund, N, Min, KW, Na, GW, Nam, JW, Panasyuk, MI, Ripa, J, Reglero, V, Rodrigo, JM, Smoot, GF, Suh, JE, Svertilov, S, Vedenkin, N, Wang, MZ, Yashin, I & Zhao, MH 2012, A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts. in Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray., 84432R, Proceedings of SPIE - The International Society for Optical Engineering, vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Amsterdam, Netherlands, 12/7/1. https://doi.org/10.1117/12.926391

A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts. / Grossan, B.; Park, I. H.; Ahmade, S.; Ahnf, K. B.; Barrillone, P.; Brandtg, S.; Budtz-Jørgenseng, C.; Castro-Tiradoh, A. J.; Cheni, P.; Choig, H. S.; Choij, Y. J.; Connellk, P.; Dagoret-Campagnee, S.; De La Taille, C.; Eyles, C.; Hermann, I.; Huang, M. H.A.; Jung, A.; Jeong, S.; Kim, J. E.; Kim, M.; Kim, Sug-Whan; Kim, Y. W.; Lee, J.; Lim, H.; Linder, E. V.; Liu, T. C.; Lund, N.; Min, K. W.; Na, G. W.; Nam, J. W.; Panasyuk, M. I.; Ripa, J.; Reglero, V.; Rodrigo, J. M.; Smoot, G. F.; Suh, J. E.; Svertilov, S.; Vedenkin, N.; Wang, M. Z.; Yashin, I.; Zhao, M. H.

Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. 2012. 84432R (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 8443).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts

AU - Grossan, B.

AU - Park, I. H.

AU - Ahmade, S.

AU - Ahnf, K. B.

AU - Barrillone, P.

AU - Brandtg, S.

AU - Budtz-Jørgenseng, C.

AU - Castro-Tiradoh, A. J.

AU - Cheni, P.

AU - Choig, H. S.

AU - Choij, Y. J.

AU - Connellk, P.

AU - Dagoret-Campagnee, S.

AU - De La Taille, C.

AU - Eyles, C.

AU - Hermann, I.

AU - Huang, M. H.A.

AU - Jung, A.

AU - Jeong, S.

AU - Kim, J. E.

AU - Kim, M.

AU - Kim, Sug-Whan

AU - Kim, Y. W.

AU - Lee, J.

AU - Lim, H.

AU - Linder, E. V.

AU - Liu, T. C.

AU - Lund, N.

AU - Min, K. W.

AU - Na, G. W.

AU - Nam, J. W.

AU - Panasyuk, M. I.

AU - Ripa, J.

AU - Reglero, V.

AU - Rodrigo, J. M.

AU - Smoot, G. F.

AU - Suh, J. E.

AU - Svertilov, S.

AU - Vedenkin, N.

AU - Wang, M. Z.

AU - Yashin, I.

AU - Zhao, M. H.

PY - 2012/12/1

Y1 - 2012/12/1

N2 - The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ̃ 100 s, but cannot respond faster than ̃ 60 s. While some rapid-response ground-based telescopes have responded quickly, the number of sub-60 s detections remains small. In 2013, the Ultra-Fast Flash Observatory-Pathfinder is expected to be launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing unique capability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here we discuss the next generation of rapid-response space observatory instruments. We list science topics motivating our instruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times, measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models, internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation in the GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument and observatory design. We describe our instrument designs and choices for a next generation space observatory as a second instrument on a lowearth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass, power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidly locate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope with a beam-steering system for rapid (̃ 1 s) response and a near-IR camera should detect ̃ 29 GRB, given Swift GRB properties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowing better characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.

AB - The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ̃ 100 s, but cannot respond faster than ̃ 60 s. While some rapid-response ground-based telescopes have responded quickly, the number of sub-60 s detections remains small. In 2013, the Ultra-Fast Flash Observatory-Pathfinder is expected to be launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing unique capability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here we discuss the next generation of rapid-response space observatory instruments. We list science topics motivating our instruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times, measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models, internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation in the GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument and observatory design. We describe our instrument designs and choices for a next generation space observatory as a second instrument on a lowearth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass, power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidly locate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope with a beam-steering system for rapid (̃ 1 s) response and a near-IR camera should detect ̃ 29 GRB, given Swift GRB properties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowing better characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.

UR - http://www.scopus.com/inward/record.url?scp=84871799162&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871799162&partnerID=8YFLogxK

U2 - 10.1117/12.926391

DO - 10.1117/12.926391

M3 - Conference contribution

AN - SCOPUS:84871799162

SN - 9780819491442

T3 - Proceedings of SPIE - The International Society for Optical Engineering

BT - Space Telescopes and Instrumentation 2012

ER -

Grossan B, Park IH, Ahmade S, Ahnf KB, Barrillone P, Brandtg S et al. A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. 2012. 84432R. (Proceedings of SPIE - The International Society for Optical Engineering). https://doi.org/10.1117/12.926391