TY - JOUR
T1 - A novel low-profile thin-film nitinol/silk endograft for treating small vascular diseases
AU - Shayan, Mahdis
AU - Yang, Sungyeun
AU - Ryu, Won Hyoung
AU - Chun, Youngjae
N1 - Publisher Copyright:
© 2015 Wiley Periodicals, Inc.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Since the introduction of various endovascular graft materials such as expanded polytetrafluoroethylene (e-PTFE) and Dacron® polyester, they have been rapidly applied in endovascular devices for treating a variety of clinical situations. While present endovascular grafts have been successful in treating large blood vessels, there are still significant challenges and limitations for small and tortuous vessels to their use. Recently, our group has demonstrated the potential to use thin-film nitinol (TFN) as a novel material to develop endografts used in the treatment of a wide range of small vascular diseases because TFN is ultralow profile (that is, a few micrometers thick), relatively thromboresistant, and superelastic. While TFN has shown superior thromboresistance, its surface endothelialization is not rapid and sufficient. Therefore, our laboratory has been exploring the feasibility of using thin-film silk as a novel coating for facilitating rapid and confluent endothelial cell growth. The purpose of this study is to fabricate a low-profile composite endograft using thin layers of nitinol and silk, and to evaluate both thrombogenicity as well as endothelial cell and smooth muscle cell responses. This study also evaluates the functionality of the composite endograft using an in vitro blood circulation model.
AB - Since the introduction of various endovascular graft materials such as expanded polytetrafluoroethylene (e-PTFE) and Dacron® polyester, they have been rapidly applied in endovascular devices for treating a variety of clinical situations. While present endovascular grafts have been successful in treating large blood vessels, there are still significant challenges and limitations for small and tortuous vessels to their use. Recently, our group has demonstrated the potential to use thin-film nitinol (TFN) as a novel material to develop endografts used in the treatment of a wide range of small vascular diseases because TFN is ultralow profile (that is, a few micrometers thick), relatively thromboresistant, and superelastic. While TFN has shown superior thromboresistance, its surface endothelialization is not rapid and sufficient. Therefore, our laboratory has been exploring the feasibility of using thin-film silk as a novel coating for facilitating rapid and confluent endothelial cell growth. The purpose of this study is to fabricate a low-profile composite endograft using thin layers of nitinol and silk, and to evaluate both thrombogenicity as well as endothelial cell and smooth muscle cell responses. This study also evaluates the functionality of the composite endograft using an in vitro blood circulation model.
UR - http://www.scopus.com/inward/record.url?scp=84951186270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84951186270&partnerID=8YFLogxK
U2 - 10.1002/jbm.b.33548
DO - 10.1002/jbm.b.33548
M3 - Article
C2 - 26663772
AN - SCOPUS:84951186270
VL - 105
SP - 575
EP - 584
JO - Journal of Biomedical Materials Research - Part B Applied Biomaterials
JF - Journal of Biomedical Materials Research - Part B Applied Biomaterials
SN - 1552-4973
IS - 3
ER -