A physiologically and biomechanically approximate model for surface electromyography amplitude estimation.

Changmok Choi, Hae Dong Lee, Jung Kim

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Surface electromygraphy (sEMG) provides information of the neural drive to the muscle, so muscle force estimation by sEMG is of high relevance in biomechanical studies and in bionic applications. Even though mean absolute value (MAV) has been widely used for sEMG amplitude estimation due to the probabilistic nature of sEMG, but it has been used without any comprehensive physiological justification. A physiologically and biomechanically approximate model for the force estimation would enable a clear understanding of the relationships between sEMG and the force, and it can be used as sEMG amplitude estimation method. We proposed a new sEMG amplitude estimation method comprising two procedures: MUAP (motor unit action potential) event detection and muscle force indication using a biomechanical muscle model. The estimation performances were evaluated with nine subjects and compared with MAV. The performance (R(2)) of the proposed method (0.94 ± 0.03) outperformed it of MAV (0.90 ± 0.02). The method we proposed should be widely applicable to quantitatively analysis muscle activities by sEMG.

Fingerprint

Electromyography
Muscles
Muscle
Bionics
Action Potentials

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Cite this

@article{0acaf0dc49f74bc2a108e17ce26689ea,
title = "A physiologically and biomechanically approximate model for surface electromyography amplitude estimation.",
abstract = "Surface electromygraphy (sEMG) provides information of the neural drive to the muscle, so muscle force estimation by sEMG is of high relevance in biomechanical studies and in bionic applications. Even though mean absolute value (MAV) has been widely used for sEMG amplitude estimation due to the probabilistic nature of sEMG, but it has been used without any comprehensive physiological justification. A physiologically and biomechanically approximate model for the force estimation would enable a clear understanding of the relationships between sEMG and the force, and it can be used as sEMG amplitude estimation method. We proposed a new sEMG amplitude estimation method comprising two procedures: MUAP (motor unit action potential) event detection and muscle force indication using a biomechanical muscle model. The estimation performances were evaluated with nine subjects and compared with MAV. The performance (R(2)) of the proposed method (0.94 ± 0.03) outperformed it of MAV (0.90 ± 0.02). The method we proposed should be widely applicable to quantitatively analysis muscle activities by sEMG.",
author = "Changmok Choi and Lee, {Hae Dong} and Jung Kim",
year = "2011",
month = "1",
day = "1",
language = "English",
pages = "4086--4089",
journal = "Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - A physiologically and biomechanically approximate model for surface electromyography amplitude estimation.

AU - Choi, Changmok

AU - Lee, Hae Dong

AU - Kim, Jung

PY - 2011/1/1

Y1 - 2011/1/1

N2 - Surface electromygraphy (sEMG) provides information of the neural drive to the muscle, so muscle force estimation by sEMG is of high relevance in biomechanical studies and in bionic applications. Even though mean absolute value (MAV) has been widely used for sEMG amplitude estimation due to the probabilistic nature of sEMG, but it has been used without any comprehensive physiological justification. A physiologically and biomechanically approximate model for the force estimation would enable a clear understanding of the relationships between sEMG and the force, and it can be used as sEMG amplitude estimation method. We proposed a new sEMG amplitude estimation method comprising two procedures: MUAP (motor unit action potential) event detection and muscle force indication using a biomechanical muscle model. The estimation performances were evaluated with nine subjects and compared with MAV. The performance (R(2)) of the proposed method (0.94 ± 0.03) outperformed it of MAV (0.90 ± 0.02). The method we proposed should be widely applicable to quantitatively analysis muscle activities by sEMG.

AB - Surface electromygraphy (sEMG) provides information of the neural drive to the muscle, so muscle force estimation by sEMG is of high relevance in biomechanical studies and in bionic applications. Even though mean absolute value (MAV) has been widely used for sEMG amplitude estimation due to the probabilistic nature of sEMG, but it has been used without any comprehensive physiological justification. A physiologically and biomechanically approximate model for the force estimation would enable a clear understanding of the relationships between sEMG and the force, and it can be used as sEMG amplitude estimation method. We proposed a new sEMG amplitude estimation method comprising two procedures: MUAP (motor unit action potential) event detection and muscle force indication using a biomechanical muscle model. The estimation performances were evaluated with nine subjects and compared with MAV. The performance (R(2)) of the proposed method (0.94 ± 0.03) outperformed it of MAV (0.90 ± 0.02). The method we proposed should be widely applicable to quantitatively analysis muscle activities by sEMG.

UR - http://www.scopus.com/inward/record.url?scp=84055200378&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84055200378&partnerID=8YFLogxK

M3 - Article

SP - 4086

EP - 4089

JO - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

JF - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

SN - 1557-170X

ER -