A porphyrin-based molecular tweezer: Guest-induced switching of forward and backward photoinduced energy transfer

Hongsik Yoon, Jong Min Lim, Hyuk Chan Gee, Chi Hwa Lee, Young Hwan Jeong, Dongho Kim, Woo Dong Jang

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

A bisindole-bridged-porphyrin tweezer (1), a pair of zinc porphyrins (PZn's) connected to bisindole bridge (BB) via the Cu I-mediated alkyne-azide click chemistry, exhibited unique switching in forward and backward photoinduced energy transfer by specific guest bindings. The addition of Cu2+ caused a change in electronic absorption and fluorescence quenching of 1. MALDI-TOF-MS and FT-IR analyses indicated the formation of stable coordination complex between 1 and Cu2+ (1-Cu(II)). Without Cu2+ coordination, the excitation energy flows from BB to PZn's with significantly high energy transfer efficiency. In contrast, the direction of energy flow in 1 was completely reversed by the coordination of Cu2+. The difference in fluorescence quantum yield between 1 and 1-Cu(II) indicates that more than 95% of excitation energy of PZn flows into Cu(II)-coordinated BB. The energy transfer efficiency was further controlled by bidentate ligand coordination onto 1-Cu(II). When pyrophosphate ion was added to 1-Cu(II), the recovery of fluorescence emission from PZn was observed. The quantum mechanical calculations indicated that the Cu(II)-coordinated BB has square planar geometry, which can be distorted to form octahedral geometry due to the coordination of bidentate ligands.

Original languageEnglish
Pages (from-to)1672-1679
Number of pages8
JournalJournal of the American Chemical Society
Volume136
Issue number4
DOIs
Publication statusPublished - 2014 Jan 29

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'A porphyrin-based molecular tweezer: Guest-induced switching of forward and backward photoinduced energy transfer'. Together they form a unique fingerprint.

  • Cite this