A rank-based selection method of materialized queries for efficient query evaluation in a mediator

Kil Hong Joo, Won Suk Lee

Research output: Contribution to journalArticle

Abstract

This paper proposes an efficient query evaluation scheme for a mediator system intended to integrate heterogeneous computing environment in terms of operating systems, database management systems, and other software. Most of mediator systems transform a global query into a set of sub-queries based on their target remote servers. Each sub-query is evaluated by the query modification method to evaluate a global query. However, it is possible to reduce the evaluation cost of a global query when the results of frequently requested sub-queries are materialized in a mediator. In a mediator, its integrating schema can be incrementally modified and the evaluation frequency of a global query can also be continuously varied. In order to select the optimized set of materialized sub-queries with respect to their current evaluation frequencies, the proposed method applies a decay factor for modeling the recent access behavior of each sub-query. In other words, the latest access of a sub-query gets the highest attention in the selection process of materialized sub-queries. As a result, it is possible to adjust the optimized set of materialized sub-queries adaptively according to the recent changes in the evaluation frequencies of sub-queries. Since finding the optimum solution of this problem is NP-hard, it takes too long to be used in practice when the number of sub-queries is large. Consequently, given the size of mediator storage, the rank-based selection algorithm proposed in this paper finds the set of materialized sub-queries which minimizes the total evaluation cost of global queries in linear search complexity.

Original languageEnglish
Pages (from-to)1850-1858
Number of pages9
JournalIEICE Transactions on Information and Systems
VolumeE87-D
Issue number7
Publication statusPublished - 2004 Jan 1

Fingerprint

Costs
Computational complexity
Servers

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Cite this

@article{e6f8c72cc21649b8b5eb3bdcb45db59e,
title = "A rank-based selection method of materialized queries for efficient query evaluation in a mediator",
abstract = "This paper proposes an efficient query evaluation scheme for a mediator system intended to integrate heterogeneous computing environment in terms of operating systems, database management systems, and other software. Most of mediator systems transform a global query into a set of sub-queries based on their target remote servers. Each sub-query is evaluated by the query modification method to evaluate a global query. However, it is possible to reduce the evaluation cost of a global query when the results of frequently requested sub-queries are materialized in a mediator. In a mediator, its integrating schema can be incrementally modified and the evaluation frequency of a global query can also be continuously varied. In order to select the optimized set of materialized sub-queries with respect to their current evaluation frequencies, the proposed method applies a decay factor for modeling the recent access behavior of each sub-query. In other words, the latest access of a sub-query gets the highest attention in the selection process of materialized sub-queries. As a result, it is possible to adjust the optimized set of materialized sub-queries adaptively according to the recent changes in the evaluation frequencies of sub-queries. Since finding the optimum solution of this problem is NP-hard, it takes too long to be used in practice when the number of sub-queries is large. Consequently, given the size of mediator storage, the rank-based selection algorithm proposed in this paper finds the set of materialized sub-queries which minimizes the total evaluation cost of global queries in linear search complexity.",
author = "Joo, {Kil Hong} and Lee, {Won Suk}",
year = "2004",
month = "1",
day = "1",
language = "English",
volume = "E87-D",
pages = "1850--1858",
journal = "IEICE Transactions on Information and Systems",
issn = "0916-8532",
publisher = "Maruzen Co., Ltd/Maruzen Kabushikikaisha",
number = "7",

}

A rank-based selection method of materialized queries for efficient query evaluation in a mediator. / Joo, Kil Hong; Lee, Won Suk.

In: IEICE Transactions on Information and Systems, Vol. E87-D, No. 7, 01.01.2004, p. 1850-1858.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A rank-based selection method of materialized queries for efficient query evaluation in a mediator

AU - Joo, Kil Hong

AU - Lee, Won Suk

PY - 2004/1/1

Y1 - 2004/1/1

N2 - This paper proposes an efficient query evaluation scheme for a mediator system intended to integrate heterogeneous computing environment in terms of operating systems, database management systems, and other software. Most of mediator systems transform a global query into a set of sub-queries based on their target remote servers. Each sub-query is evaluated by the query modification method to evaluate a global query. However, it is possible to reduce the evaluation cost of a global query when the results of frequently requested sub-queries are materialized in a mediator. In a mediator, its integrating schema can be incrementally modified and the evaluation frequency of a global query can also be continuously varied. In order to select the optimized set of materialized sub-queries with respect to their current evaluation frequencies, the proposed method applies a decay factor for modeling the recent access behavior of each sub-query. In other words, the latest access of a sub-query gets the highest attention in the selection process of materialized sub-queries. As a result, it is possible to adjust the optimized set of materialized sub-queries adaptively according to the recent changes in the evaluation frequencies of sub-queries. Since finding the optimum solution of this problem is NP-hard, it takes too long to be used in practice when the number of sub-queries is large. Consequently, given the size of mediator storage, the rank-based selection algorithm proposed in this paper finds the set of materialized sub-queries which minimizes the total evaluation cost of global queries in linear search complexity.

AB - This paper proposes an efficient query evaluation scheme for a mediator system intended to integrate heterogeneous computing environment in terms of operating systems, database management systems, and other software. Most of mediator systems transform a global query into a set of sub-queries based on their target remote servers. Each sub-query is evaluated by the query modification method to evaluate a global query. However, it is possible to reduce the evaluation cost of a global query when the results of frequently requested sub-queries are materialized in a mediator. In a mediator, its integrating schema can be incrementally modified and the evaluation frequency of a global query can also be continuously varied. In order to select the optimized set of materialized sub-queries with respect to their current evaluation frequencies, the proposed method applies a decay factor for modeling the recent access behavior of each sub-query. In other words, the latest access of a sub-query gets the highest attention in the selection process of materialized sub-queries. As a result, it is possible to adjust the optimized set of materialized sub-queries adaptively according to the recent changes in the evaluation frequencies of sub-queries. Since finding the optimum solution of this problem is NP-hard, it takes too long to be used in practice when the number of sub-queries is large. Consequently, given the size of mediator storage, the rank-based selection algorithm proposed in this paper finds the set of materialized sub-queries which minimizes the total evaluation cost of global queries in linear search complexity.

UR - http://www.scopus.com/inward/record.url?scp=3142682961&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3142682961&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:3142682961

VL - E87-D

SP - 1850

EP - 1858

JO - IEICE Transactions on Information and Systems

JF - IEICE Transactions on Information and Systems

SN - 0916-8532

IS - 7

ER -