Abstract
Recent zoonotic outbreaks, such as Zika, Middle East respiratory syndrome and Ebola, have highlighted the need for rapid and accurate diagnostic assays that can be used to aid pathogen control. Q fever is a zoonotic disease caused by the transmission of Coxiella burnetii that can cause serious illness in humans through aerosols and is considered a potential bioterrorism agent. However, the existing assays are not suitable for the detection of this pathogen due to its low levels in real samples. We here describe a rapid bio-optical sensor for the accurate detection of Q fever and validate its clinical utility. By combining a bio-optical sensor, that transduces the presence of the target DNA based on binding-induced changes in the refractive index on the waveguide surface in a label-free and real-time manner, with isothermal DNA amplification, this new diagnostic tool offers a rapid (<20 min), 1-step DNA amplification/detection method. We confirmed the clinical sensitivity (>90%) of the bio-optical sensor by detecting C. burnetii in 11 formalin-fixed, paraffin-embedded liver biopsy samples from acute Q fever hepatitis patients and in 16 blood plasma samples from patients in which Q fever is the cause of fever of unknown origin.
Original language | English |
---|---|
Article number | e201700167 |
Journal | Journal of Biophotonics |
Volume | 11 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2018 Apr |
Bibliographical note
Funding Information:This work was supported by the grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (HI16C-0272-010016).
Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Engineering(all)
- Physics and Astronomy(all)