A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA

Jong Won Oh, Takayoshi Ito, Michael M.C. Lai

Research output: Contribution to journalArticle

197 Citations (Scopus)

Abstract

All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.

Original languageEnglish
Pages (from-to)7694-7702
Number of pages9
JournalJournal of Virology
Volume73
Issue number9
Publication statusPublished - 1999 Aug 23

Fingerprint

RNA-directed RNA polymerase
RNA Replicase
Hepatitis C virus
Viral RNA
Hepacivirus
RNA
Nucleotides
nucleotides
synthesis
Genome
Poly A
Enzymes
DNA-Directed RNA Polymerases

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this

@article{8160b25ed3504876997f3cb70d7ba45a,
title = "A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA",
abstract = "All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.",
author = "Oh, {Jong Won} and Takayoshi Ito and Lai, {Michael M.C.}",
year = "1999",
month = "8",
day = "23",
language = "English",
volume = "73",
pages = "7694--7702",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "9",

}

A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. / Oh, Jong Won; Ito, Takayoshi; Lai, Michael M.C.

In: Journal of Virology, Vol. 73, No. 9, 23.08.1999, p. 7694-7702.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA

AU - Oh, Jong Won

AU - Ito, Takayoshi

AU - Lai, Michael M.C.

PY - 1999/8/23

Y1 - 1999/8/23

N2 - All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.

AB - All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.

UR - http://www.scopus.com/inward/record.url?scp=0032816079&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032816079&partnerID=8YFLogxK

M3 - Article

C2 - 10438859

AN - SCOPUS:0032816079

VL - 73

SP - 7694

EP - 7702

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 9

ER -