A robust design of Ru quantum dot/N-doped holey graphene for efficient Li-O2 batteries

Masoud Nazarian-Samani, Hee Dae Lim, Safa Haghighat-Shishavan, Hyun Kyung Kim, Youngmin Ko, Myeong Seong Kim, Suk Woo Lee, Seyed Farshid Kashani-Bozorg, Majid Abbasi, Hwan Uk Guim, Dong Ik Kim, Kwang Chul Roh, Kisuk Kang, Kwang Bum Kim

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

Herein, we report a simple, versatile, defect-engineered method to fabricate Ru quantum dots (Ru QDs) uniformly anchored on a nitrogen-doped holey graphene (NHG) monolith. It uses in situ pyrolysis of mixed glucose, dicyandiamide (DCDA), and RuCl3, followed by an acid treatment, and a final heat treatment to introduce in-plane holes of various sizes. A novel transmission method in scanning electron microscopy was successfully implemented to directly visualize the holes with color contrast. A low accelerating voltage of 5 kV enabled prolonged observation without significant electron beam damage. The mechanisms of hole creation were examined in detail using various characterization techniques as well as control experiments. The Ru QDs had significant catalytic activity and resulted in larger in-plane holes through the graphene sheets. The mechanical strain and the chemical reactivity of Ru QDs significantly diminished the activation energy barrier for the oxidation of C=C bonds in the graphene structure. The Ru QD/NHG hybrid material was utilized as an electrocatalyst for the oxygen evolution reaction in Li-O2 batteries, showing much lower charge overpotentials compared to the bare NHG counterpart. The defect-laden holey graphene counterpart can be highly functionalized for multiple applications, leading to a new method of nanoengineering based on atomic scale defects.

Original languageEnglish
Pages (from-to)619-631
Number of pages13
JournalJournal of Materials Chemistry A
Volume5
Issue number2
DOIs
Publication statusPublished - 2017

Bibliographical note

Funding Information:
This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry & Energy (MOTIE) (No. 2016-11-0653). This research was also supported by the Materials and Components Technology Development Program of MOTIE/KEIT, Republic of Korea [10062226, Development of a high-capacitance (0.2 F cm

Publisher Copyright:
© The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'A robust design of Ru quantum dot/N-doped holey graphene for efficient Li-O2 batteries'. Together they form a unique fingerprint.

Cite this