A scalable and adaptive method for finding semantically equivalent cue words of uncertainty

Chaomei Chen, Min Song, Go Eun Heo

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Scientific knowledge is constantly subject to a variety of changes due to new discoveries, alternative interpretations, and fresh perspectives. Understanding uncertainties associated with various stages of scientific inquiries is an integral part of scientists’ domain expertise and it serves as the core of their meta-knowledge of science. Despite the growing interest in areas such as computational linguistics, systematically characterizing and tracking the epistemic status of scientific claims and their evolution in scientific disciplines remains a challenge. We present a unifying framework for the study of uncertainties explicitly and implicitly conveyed in scientific publications. The framework aims to accommodate a wide range of uncertainty types, from speculations to inconsistencies and controversies. We introduce a scalable and adaptive method to recognize semantically equivalent cues of uncertainty across different fields of research and accommodate individual analysts’ unique perspectives. We demonstrate how the new method can be used to expand a small seed list of uncertainty cue words and how the validity of the expanded candidate cue words is verified. We visualize the mixture of the original and expanded uncertainty cue words to reveal the diversity of expressions of uncertainty. These cue words offer a novel resource for the study of uncertainty in scientific assertions.

Original languageEnglish
Pages (from-to)158-180
Number of pages23
JournalJournal of Informetrics
Issue number1
Publication statusPublished - 2018 Feb

Bibliographical note

Funding Information:
This work was supported by the Science of Science and Innovation Policy (SciSIP) Program of the National Science Foundation (#1633286). This work was also supported by the Bio-Synergy Research Project (NRF-2013M3A9C4078138) of the Ministry of Science, ICT and Future Planning through the National Research Foundation.

Publisher Copyright:
© 2017 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Library and Information Sciences


Dive into the research topics of 'A scalable and adaptive method for finding semantically equivalent cue words of uncertainty'. Together they form a unique fingerprint.

Cite this