A self-powered one-touch blood extraction system: A novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator

Cheng Guo Li, Manita Dangol, Chang Yeol Lee, Mingyu Jang, Hyungil Jung

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Blood is the gold standard sample medium that can provide a wide variety of useful biological information for the diagnosis of various diseases. For portable point-of-care diagnosis, blood extraction systems have attracted attention as easier, safer, and more rapid methods of collecting small blood volumes. In this paper, we introduce a novel self-powered one-touch blood extraction system created by assembling a smart polymer-capped hollow microneedle in a pre-vacuum polydimethylsiloxane actuator. The optimized hollow microneedle was precisely fabricated by drawing lithography for minimally invasive blood extraction, with a length of 1800 μm, an inner diameter of 60 μm, an outer diameter of 130 μm, and a bevel angle of 15°. The system utilizes only a single step for operation; a finger press activates the blood sampling process based on the negative pressure-driven force built into the pre-vacuum activated actuator. A sufficient volume of blood (31.3 ± 2.0 μl) was successfully extracted from a rabbit for evaluation using a micro total analysis system. The entire system was made of low-cost and disposable materials to achieve easy operation with a miniature structure and to meet the challenging requirements for single-use application in a point-of-care system without the use of any external power equipment.

Original languageEnglish
Pages (from-to)382-390
Number of pages9
JournalLab on a chip
Volume15
Issue number2
DOIs
Publication statusPublished - 2015 Jan 21

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biochemistry
  • Chemistry(all)
  • Biomedical Engineering

Cite this