Abstract
We demonstrate a facile approach to fabrication of a self-standing plastic crystal composite electrolyte for a lithium-ion battery, wherein UV (ultraviolet)-cured ethoxylated trimethylolpropane triacrylate (ETPTA) networks are incorporated into a plastic crystal electrolyte (PCE, 1 M lithium bistrifluoromethanesulphonimide (LiTFSI) in succinonitrile (SN)). An ETPTA monomer having trifunctional groups is successfully crosslinked within a very short UV-exposure time of 20 s without using any solvent, leading to the formation of a self-standing, transparent, and non-sticky plastic crystal composite electrolyte (X-PCCE). Owing to the introduction of the UV-cured ETPTA networks, the X-PCCE is capable of providing unprecedentedly robust mechanical strength even at a high concentration of PCE (i.e., ETPTA/PCE = 15/85%, w/w), along with affording high ionic conductivity. In contrast, a conventional plastic crystal composite electrolyte (F-PCCE) comprising polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) and PCE is difficult to be fabricated as a self-standing film and easily deformed by weak external stress. Notably, the X-PCCE shows significant improvement in electrochemical stability and interfacial resistance toward lithium metal electrodes. Ionic conductivities of the X-PCCE and the F-PCCE are examined as a function of temperature and discussed under consideration of the interaction between SN, LiTFSI, and polymers in the plastic crystal composite electrolytes.
Original language | English |
---|---|
Pages (from-to) | 40-45 |
Number of pages | 6 |
Journal | Electrochimica Acta |
Volume | 57 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2011 Dec 15 |
Bibliographical note
Funding Information:This research was supported by the Converging Research Center Program through the Ministry of Education, Science and Technology ( 2010K001090 ).
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)
- Electrochemistry