Abstract
In this study, we present a new isotope-coded carbamidomethylation (iCCM)-based quantitative proteomics, as a complementary strategy for conventional isotope labeling strategies, with providing the simplicity, ease of use, and robustness. In iCCM-based quantification, two proteome samples can be separately isotope-labeled by means of covalently reaction of all cysteinyl residues in proteins with iodoacetamide (IAA) and its isotope (IAA-13C2, D2), denoted as CM and iCCM, respectively, leading to a mass shift of all cysteinyl residues to be + 4 Da. To evaluate iCCM-based isotope labeling in proteomic quantification, 6 protein standards (i.e., bovine serum albumin, serotransferrin, lysozyme, beta-lactoglobulin, beta-galactosidase, and alpha-lactalbumin) isotopically labeled with IAA and its isotope, mixed equally, and followed by proteolytic digestion. The resulting CM-/iCCM-labeled peptide mixtures were analyzed using a nLC-ESI-FT orbitrap-MS/MS. From our experimental results, we found that the efficiency of iCCM-based quantification is more superior to that of mTRAQ, as a conventional nonisobaric labeling method, in which both of a number of identified peptides from 6 protein standards and the less quantitative variations in the relative abundance ratios of heavy-/light-labeled corresponding peptide pairs. Finally, we applied the developed iCCM-based quantitative method to lung cancer serum proteome in order to evaluate the potential in biomarker discovery study.
Original language | English |
---|---|
Pages (from-to) | 63-69 |
Number of pages | 7 |
Journal | Mass Spectrometry Letters |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 Sept 1 |
Bibliographical note
Publisher Copyright:© 2014, Korean Society for Mass Spectrometry. All right reserved.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Biochemistry, Genetics and Molecular Biology(all)
- Spectroscopy