A synthetic compound, 4-acetyl-3-methyl-6-(3,4,5-trimethoxyphenyl)pyrano[3, 4-c]pyran-1,8-dione, ameliorates ovalbumin-induced asthma

Hwan Suck Chung, Youngeun Kim, Sei Joong Oh, Hankyum Kim, Seung Ill Choi, Yujuan Zhang, Jin-Hyun Jeong, Hyunsu Bae

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Eosinophilia is one of the characteristic signs of allergic inflammation. Massive migration of eosinophils to the airways can cause epithelial tissue injury, contraction of airway smooth muscle and increased bronchial responsiveness. Previously, we discovered a new compound, 1H,8H-pyrano[3,4-c] pyran-1,8-dione (PPY), derived from the fruit of Vitex rotundifolia L. and evaluated its anti-inflammatory and anti-asthmatic properties. In this study, we synthesized a new modified compound, 4-acetyl-3-methyl-6-(3,4,5- trimethoxyphenyl) pyrano[3,4-c]pyran-1,8-dione (PPY-345), which was based on the PPY skeleton, and we evaluated its anti-asthmatic effects. To evaluate the anti-asthmatic effect of PPY-345 in vitro, A549 lung epithelial cells were stimulated with TNF-alpha, IL-4 and IL-1-beta to induce the expression of CCL11 (Eotaxin), a chemokine involved in eosinophil chemotaxis. To characterize the anti-asthmatic properties of PPY-345 in vivo, we examined the influence of PPY-345 in an ovalbumin (OVA)-induced asthma model. PPY-345 treatments significantly reduced CCL11 secretion. PPY-345 treatment did not inhibit the translocation of NF-κB into the nucleus but suppressed the phosphorylation of signal transducers and activators of transcription 6 (STAT6). PPY-345 treatment significantly reduced airway hyperreactivity as measured by whole-body plethysmography. PPY-345 further reduced total cells, including eosinophil, macrophage and lymphocytes, in the BAL fluid, goblet cell hyperplasia and myosin light chain 2 positive smooth muscle cell area in the lung tissue. Additionally, PPY-345 significantly suppressed the levels of OVA-IgE present in the serum. These results suggested that PPY-345 could improve asthma symptoms in OVA-sensitized mice.

Original languageEnglish
Pages (from-to)6359-6365
Number of pages7
JournalBioorganic and Medicinal Chemistry
Volume21
Issue number21
DOIs
Publication statusPublished - 2013 Nov 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry

Cite this