Abstract
This paper firstly reports an all-textile tactile sensor with high sensitivity and linear response over a wide pressure range based on carbon nanotube (CNT)-coated fabric with a stacked multilayer structure. When pressure is applied, the hierarchical, porous structure of fabric with a large surface area allows the dramatic increase in the contact area between the stacked fabrics, leading to a decrease in contact resistance. The multilayer structure can improve the linearity and sensitivity owing to the effective stress distribution and the increased contact area change between the layers compared to a single-layered one. We observed a linear increase in current of the fabricated sensor under external pressure, and it exhibited high sensitivity over a broad pressure range. The proposed sensor would be an attractive candidate for flexible, highperformance tactile sensing components.
Original language | English |
---|---|
Title of host publication | 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, MEMS 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 194-197 |
Number of pages | 4 |
ISBN (Electronic) | 9781728116105 |
DOIs | |
Publication status | Published - 2019 Jan |
Event | 32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019 - Seoul, Korea, Republic of Duration: 2019 Jan 27 → 2019 Jan 31 |
Publication series
Name | Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) |
---|---|
Volume | 2019-January |
ISSN (Print) | 1084-6999 |
Conference
Conference | 32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 19/1/27 → 19/1/31 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2A1A05023070)
Publisher Copyright:
© 2019 IEEE.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanical Engineering
- Electrical and Electronic Engineering