TY - JOUR
T1 - A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates
AU - Triambulo, Ross E.
AU - Cheong, Hahn Gil
AU - Lee, Gun Hwan
AU - Yi, In Sook
AU - Park, Jin Woo
PY - 2015/1/25
Y1 - 2015/1/25
N2 - We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O2 plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (rb) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an rb of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI.
AB - We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O2 plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (rb) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an rb of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI.
UR - http://www.scopus.com/inward/record.url?scp=84908007012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908007012&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2014.09.159
DO - 10.1016/j.jallcom.2014.09.159
M3 - Article
VL - 620
SP - 340
EP - 349
JO - Journal of the Less-Common Metals
JF - Journal of the Less-Common Metals
SN - 0925-8388
ER -