Abstract
A triple-layered, core-shell nanostructure is prepared with Ag octahedra, a SnO2 nanotube (SNT), and a TiO2 nanosheet (TNS) via a combined process of electrospinning and solvothermal reaction. In particular, a facile one-step synthesis process for Ag octahedral nanocrystals is suggested. The Ag@SNT@TNS hetero-nanostructure is uniformly distributed in an organized TiO2 film derived with the poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer and hydrophilically pretreated TiO2 nanocrystals. The efficiency of solid-state dye-sensitized solar cells (ssDSSCs) fabricated with this hetero-nanostructure reaches 7.8% at 100 mW cm-2, which is much greater than that of cells without a hetero-nanostructure (5.2%) or that prepared with commercially available Dyesol paste (4.4%). This higher efficiency is attributed to the one-dimensional (1D) tubular structure, the improved surface area, and the plasmonic effect of Ag octahedral nanocrystals, resulting in enhanced short-circuit current density (Jsc), as confirmed by the incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS).
Original language | English |
---|---|
Pages (from-to) | 17644-17651 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry A |
Volume | 3 |
Issue number | 34 |
DOIs | |
Publication status | Published - 2015 Jul 22 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry 2015.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)