Abstract
With the increasing complexity of graph structures, the current real-world large-scale graphs are being represented by a considerable amount of vertex and edge data. Furthermore, the analysis of a large number of computing nodes has become a very complicated job that requires a large amount of hardware resources. Moreover, in large-scale graph processing, the vertex and edge data show random and sequential memory access patterns at the same time, and this is a major bottleneck in graph processing. In this paper, we present a high-capacity main memory system with an intelligent pattern-aware prefetching engine to overcome the scalability problem and the memory inefficiency of single-machine graph processing. The proposed intelligent pattern-aware prefetching engine is designed to predict and handle sequential or regular patterns and random-access patterns simultaneously. Experimental results demonstrated that the proposed model exhibited performance improvements of 60% over conventional DRAM models, approximately 40% over the existing prefetch models, and about 12.5% over the latest prefetch models.
Original language | English |
---|---|
Pages (from-to) | 560-573 |
Number of pages | 14 |
Journal | Future Generation Computer Systems |
Volume | 108 |
DOIs | |
Publication status | Published - 2020 Jul |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) ( NRF-2019R1A2C1008716 ).
Publisher Copyright:
© 2020 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Software
- Hardware and Architecture
- Computer Networks and Communications