Abstract
We present a novel quasi-Bayesian method to weight multiple dynamical models by their skill at capturing both potentially non-linear trends and first-order autocorrelated variability of the underlying process, and to make weighted probabilistic projections. We validate the method using a suite of one-at-a-time cross-validation experiments involving Atlantic meridional overturning circulation (AMOC), its temperature-based index, as well as Korean summer mean maximum temperature. In these experiments the method tends to exhibit superior skill over a trend-only Bayesian model averaging weighting method in terms of weight assignment and probabilistic forecasts. Specifically, mean credible interval width, and mean absolute error of the projections tend to improve. We apply the method to a problem of projecting summer mean maximum temperature change over Korea by the end of the 21st century using a multi-model ensemble. Compared to the trend-only method, the new method appreciably sharpens the probability distribution function (pdf) and increases future most likely, median, and mean warming in Korea. The method is flexible, with a potential to improve forecasts in geosciences and other fields.
Original language | English |
---|---|
Article number | e0214535 |
Journal | PloS one |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2019 Apr |
Bibliographical note
Publisher Copyright:© 2019 Olson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
All Science Journal Classification (ASJC) codes
- General