Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells

Takatsugu Ishimoto, Keisuke Miyake, Tannistha Nandi, Masakazu Yashiro, Nobuyuki Onishi, Kie Kyon Huang, Suling Joyce Lin, Ramnarayanan Kalpana, Su Ting Tay, Yuka Suzuki, ByoungChul Cho, Daisuke Kuroda, Kota Arima, Daisuke Izumi, Masaaki Iwatsuki, Yoshifumi Baba, Eiji Oki, Masayuki Watanabe, Hideyuki Saya, Kosei Hirakawa & 2 others Hideo Baba, Patrick Tan

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Background & Aims Fibroblasts that interact with cancer cells are called cancer-associated fibroblasts (CAFs), which promote progression of different tumor types. We investigated the characteristics and functions of CAFs in diffuse-type gastric cancers (DGCs) by analyzing features of their genome and gene expression patterns. Methods We isolated CAFs and adjacent non-cancer fibroblasts (NFs) from 110 gastric cancer (GC) tissues from patients who underwent gastrectomy in Japan from 2008 through 2016. Cells were identified using specific markers of various cell types by immunoblot and flow cytometry. We selected pairs of CAFs and NFs for whole-exome and RNA sequencing analyses, and compared expression of specific genes using quantitative reverse transcription PCR. Protein levels and phosphorylation were compared by immunoblot and immunofluorescence analyses. Rhomboid 5 homolog 2 (RHBDF2) was overexpressed from a transgene in fibroblasts or knocked down using small interfering RNAs. Motility and invasiveness of isolated fibroblasts and GC cell lines (AGS, KATOIII, MKN45, NUGC3, NUGC4, OCUM-2MD3 and OCUM-12 cell lines) were quantified by real-time imaging analyses. We analyzed 7 independent sets of DNA microarray data from patients with GC and associated expression levels of specific genes with patient survival times. Nude mice were given injections of OCUM-2MD3 in the stomach wall; tumors and metastases were collected and analyzed by immunohistochemistry. Results Many of the genes with increased expression in CAFs compared with NFs were associated with transforming growth factor beta 1 (TGFB1) activity. When CAFs were cultured in extracellular matrix, they became more motile than NFs; DGC cells incubated with CAFs were also more motile and invasive in vitro than DGC cells not incubated with CAFs. When injected into nude mice, CAF-incubated DGC cells invaded a greater number of lymphatic vessels than NF-incubated DGC cells. We identified RHBDF2 as a gene overexpressed in CAFs compared with NFs. Knockdown of RHBDF2 in CAFs reduced their elongation and motility in response to TGFB1, whereas overexpression of RHBDF2 in NFs increased their motility in extracellular matrix. RHBDF2 appeared to regulate oncogenic and non-canonical TGFB1 signaling. Knockdown of RHBDF2 in CAFs reduced cleavage of the TGFB receptor 1 (TGFBR1) by ADAM metallopeptidase domain 17 (ADAM17 or TACE) and reduced expression of genes that regulate motility. Incubation of NFs with in interleukin 1 alpha (IL1A), IL1B or tumor necrosis factor, secreted by DGCs, increased fibroblast expression of RHBDF2. Simultaneous high expression of these cytokines in GC samples was associated with shorter survival times of patients. Conclusions In CAFs isolated from human DGCs, we observed increased expression of RHBDF2, which regulates TGFB1 signaling. Expression of RHBDF2 in fibroblasts is induced by inflammatory cytokines (such as IL1A, IL1B, and tumor necrosis factor) secreted by DGCs. RHBDF2 promotes cleavage of TGFBR1 by activating TACE and motility of CAFs in response to TGFB1. These highly motile CAFs induce DGCs to invade extracellular matrix and lymphatic vessels in nude mice.

Original languageEnglish
Pages (from-to)191-204.e16
JournalGastroenterology
Volume153
Issue number1
DOIs
Publication statusPublished - 2017 Jul 1

Fingerprint

Transforming Growth Factor beta
Stomach Neoplasms
Fibroblasts
Nude Mice
Extracellular Matrix
Lymphatic Vessels
Interleukin-1alpha
Cancer-Associated Fibroblasts
Gene Expression
Tumor Necrosis Factor-alpha
Cytokines
Genes
Exome
RNA Sequence Analysis
Cell Line
Neoplasms
Survival
Gastrectomy
Oligonucleotide Array Sequence Analysis
Transgenes

All Science Journal Classification (ASJC) codes

  • Hepatology
  • Gastroenterology

Cite this

Ishimoto, Takatsugu ; Miyake, Keisuke ; Nandi, Tannistha ; Yashiro, Masakazu ; Onishi, Nobuyuki ; Huang, Kie Kyon ; Lin, Suling Joyce ; Kalpana, Ramnarayanan ; Tay, Su Ting ; Suzuki, Yuka ; Cho, ByoungChul ; Kuroda, Daisuke ; Arima, Kota ; Izumi, Daisuke ; Iwatsuki, Masaaki ; Baba, Yoshifumi ; Oki, Eiji ; Watanabe, Masayuki ; Saya, Hideyuki ; Hirakawa, Kosei ; Baba, Hideo ; Tan, Patrick. / Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells. In: Gastroenterology. 2017 ; Vol. 153, No. 1. pp. 191-204.e16.
@article{506057cc8a3b4b118f0f7a944b8f622f,
title = "Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells",
abstract = "Background & Aims Fibroblasts that interact with cancer cells are called cancer-associated fibroblasts (CAFs), which promote progression of different tumor types. We investigated the characteristics and functions of CAFs in diffuse-type gastric cancers (DGCs) by analyzing features of their genome and gene expression patterns. Methods We isolated CAFs and adjacent non-cancer fibroblasts (NFs) from 110 gastric cancer (GC) tissues from patients who underwent gastrectomy in Japan from 2008 through 2016. Cells were identified using specific markers of various cell types by immunoblot and flow cytometry. We selected pairs of CAFs and NFs for whole-exome and RNA sequencing analyses, and compared expression of specific genes using quantitative reverse transcription PCR. Protein levels and phosphorylation were compared by immunoblot and immunofluorescence analyses. Rhomboid 5 homolog 2 (RHBDF2) was overexpressed from a transgene in fibroblasts or knocked down using small interfering RNAs. Motility and invasiveness of isolated fibroblasts and GC cell lines (AGS, KATOIII, MKN45, NUGC3, NUGC4, OCUM-2MD3 and OCUM-12 cell lines) were quantified by real-time imaging analyses. We analyzed 7 independent sets of DNA microarray data from patients with GC and associated expression levels of specific genes with patient survival times. Nude mice were given injections of OCUM-2MD3 in the stomach wall; tumors and metastases were collected and analyzed by immunohistochemistry. Results Many of the genes with increased expression in CAFs compared with NFs were associated with transforming growth factor beta 1 (TGFB1) activity. When CAFs were cultured in extracellular matrix, they became more motile than NFs; DGC cells incubated with CAFs were also more motile and invasive in vitro than DGC cells not incubated with CAFs. When injected into nude mice, CAF-incubated DGC cells invaded a greater number of lymphatic vessels than NF-incubated DGC cells. We identified RHBDF2 as a gene overexpressed in CAFs compared with NFs. Knockdown of RHBDF2 in CAFs reduced their elongation and motility in response to TGFB1, whereas overexpression of RHBDF2 in NFs increased their motility in extracellular matrix. RHBDF2 appeared to regulate oncogenic and non-canonical TGFB1 signaling. Knockdown of RHBDF2 in CAFs reduced cleavage of the TGFB receptor 1 (TGFBR1) by ADAM metallopeptidase domain 17 (ADAM17 or TACE) and reduced expression of genes that regulate motility. Incubation of NFs with in interleukin 1 alpha (IL1A), IL1B or tumor necrosis factor, secreted by DGCs, increased fibroblast expression of RHBDF2. Simultaneous high expression of these cytokines in GC samples was associated with shorter survival times of patients. Conclusions In CAFs isolated from human DGCs, we observed increased expression of RHBDF2, which regulates TGFB1 signaling. Expression of RHBDF2 in fibroblasts is induced by inflammatory cytokines (such as IL1A, IL1B, and tumor necrosis factor) secreted by DGCs. RHBDF2 promotes cleavage of TGFBR1 by activating TACE and motility of CAFs in response to TGFB1. These highly motile CAFs induce DGCs to invade extracellular matrix and lymphatic vessels in nude mice.",
author = "Takatsugu Ishimoto and Keisuke Miyake and Tannistha Nandi and Masakazu Yashiro and Nobuyuki Onishi and Huang, {Kie Kyon} and Lin, {Suling Joyce} and Ramnarayanan Kalpana and Tay, {Su Ting} and Yuka Suzuki and ByoungChul Cho and Daisuke Kuroda and Kota Arima and Daisuke Izumi and Masaaki Iwatsuki and Yoshifumi Baba and Eiji Oki and Masayuki Watanabe and Hideyuki Saya and Kosei Hirakawa and Hideo Baba and Patrick Tan",
year = "2017",
month = "7",
day = "1",
doi = "10.1053/j.gastro.2017.03.046",
language = "English",
volume = "153",
pages = "191--204.e16",
journal = "Gastroenterology",
issn = "0016-5085",
publisher = "W.B. Saunders Ltd",
number = "1",

}

Ishimoto, T, Miyake, K, Nandi, T, Yashiro, M, Onishi, N, Huang, KK, Lin, SJ, Kalpana, R, Tay, ST, Suzuki, Y, Cho, B, Kuroda, D, Arima, K, Izumi, D, Iwatsuki, M, Baba, Y, Oki, E, Watanabe, M, Saya, H, Hirakawa, K, Baba, H & Tan, P 2017, 'Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells', Gastroenterology, vol. 153, no. 1, pp. 191-204.e16. https://doi.org/10.1053/j.gastro.2017.03.046

Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells. / Ishimoto, Takatsugu; Miyake, Keisuke; Nandi, Tannistha; Yashiro, Masakazu; Onishi, Nobuyuki; Huang, Kie Kyon; Lin, Suling Joyce; Kalpana, Ramnarayanan; Tay, Su Ting; Suzuki, Yuka; Cho, ByoungChul; Kuroda, Daisuke; Arima, Kota; Izumi, Daisuke; Iwatsuki, Masaaki; Baba, Yoshifumi; Oki, Eiji; Watanabe, Masayuki; Saya, Hideyuki; Hirakawa, Kosei; Baba, Hideo; Tan, Patrick.

In: Gastroenterology, Vol. 153, No. 1, 01.07.2017, p. 191-204.e16.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells

AU - Ishimoto, Takatsugu

AU - Miyake, Keisuke

AU - Nandi, Tannistha

AU - Yashiro, Masakazu

AU - Onishi, Nobuyuki

AU - Huang, Kie Kyon

AU - Lin, Suling Joyce

AU - Kalpana, Ramnarayanan

AU - Tay, Su Ting

AU - Suzuki, Yuka

AU - Cho, ByoungChul

AU - Kuroda, Daisuke

AU - Arima, Kota

AU - Izumi, Daisuke

AU - Iwatsuki, Masaaki

AU - Baba, Yoshifumi

AU - Oki, Eiji

AU - Watanabe, Masayuki

AU - Saya, Hideyuki

AU - Hirakawa, Kosei

AU - Baba, Hideo

AU - Tan, Patrick

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Background & Aims Fibroblasts that interact with cancer cells are called cancer-associated fibroblasts (CAFs), which promote progression of different tumor types. We investigated the characteristics and functions of CAFs in diffuse-type gastric cancers (DGCs) by analyzing features of their genome and gene expression patterns. Methods We isolated CAFs and adjacent non-cancer fibroblasts (NFs) from 110 gastric cancer (GC) tissues from patients who underwent gastrectomy in Japan from 2008 through 2016. Cells were identified using specific markers of various cell types by immunoblot and flow cytometry. We selected pairs of CAFs and NFs for whole-exome and RNA sequencing analyses, and compared expression of specific genes using quantitative reverse transcription PCR. Protein levels and phosphorylation were compared by immunoblot and immunofluorescence analyses. Rhomboid 5 homolog 2 (RHBDF2) was overexpressed from a transgene in fibroblasts or knocked down using small interfering RNAs. Motility and invasiveness of isolated fibroblasts and GC cell lines (AGS, KATOIII, MKN45, NUGC3, NUGC4, OCUM-2MD3 and OCUM-12 cell lines) were quantified by real-time imaging analyses. We analyzed 7 independent sets of DNA microarray data from patients with GC and associated expression levels of specific genes with patient survival times. Nude mice were given injections of OCUM-2MD3 in the stomach wall; tumors and metastases were collected and analyzed by immunohistochemistry. Results Many of the genes with increased expression in CAFs compared with NFs were associated with transforming growth factor beta 1 (TGFB1) activity. When CAFs were cultured in extracellular matrix, they became more motile than NFs; DGC cells incubated with CAFs were also more motile and invasive in vitro than DGC cells not incubated with CAFs. When injected into nude mice, CAF-incubated DGC cells invaded a greater number of lymphatic vessels than NF-incubated DGC cells. We identified RHBDF2 as a gene overexpressed in CAFs compared with NFs. Knockdown of RHBDF2 in CAFs reduced their elongation and motility in response to TGFB1, whereas overexpression of RHBDF2 in NFs increased their motility in extracellular matrix. RHBDF2 appeared to regulate oncogenic and non-canonical TGFB1 signaling. Knockdown of RHBDF2 in CAFs reduced cleavage of the TGFB receptor 1 (TGFBR1) by ADAM metallopeptidase domain 17 (ADAM17 or TACE) and reduced expression of genes that regulate motility. Incubation of NFs with in interleukin 1 alpha (IL1A), IL1B or tumor necrosis factor, secreted by DGCs, increased fibroblast expression of RHBDF2. Simultaneous high expression of these cytokines in GC samples was associated with shorter survival times of patients. Conclusions In CAFs isolated from human DGCs, we observed increased expression of RHBDF2, which regulates TGFB1 signaling. Expression of RHBDF2 in fibroblasts is induced by inflammatory cytokines (such as IL1A, IL1B, and tumor necrosis factor) secreted by DGCs. RHBDF2 promotes cleavage of TGFBR1 by activating TACE and motility of CAFs in response to TGFB1. These highly motile CAFs induce DGCs to invade extracellular matrix and lymphatic vessels in nude mice.

AB - Background & Aims Fibroblasts that interact with cancer cells are called cancer-associated fibroblasts (CAFs), which promote progression of different tumor types. We investigated the characteristics and functions of CAFs in diffuse-type gastric cancers (DGCs) by analyzing features of their genome and gene expression patterns. Methods We isolated CAFs and adjacent non-cancer fibroblasts (NFs) from 110 gastric cancer (GC) tissues from patients who underwent gastrectomy in Japan from 2008 through 2016. Cells were identified using specific markers of various cell types by immunoblot and flow cytometry. We selected pairs of CAFs and NFs for whole-exome and RNA sequencing analyses, and compared expression of specific genes using quantitative reverse transcription PCR. Protein levels and phosphorylation were compared by immunoblot and immunofluorescence analyses. Rhomboid 5 homolog 2 (RHBDF2) was overexpressed from a transgene in fibroblasts or knocked down using small interfering RNAs. Motility and invasiveness of isolated fibroblasts and GC cell lines (AGS, KATOIII, MKN45, NUGC3, NUGC4, OCUM-2MD3 and OCUM-12 cell lines) were quantified by real-time imaging analyses. We analyzed 7 independent sets of DNA microarray data from patients with GC and associated expression levels of specific genes with patient survival times. Nude mice were given injections of OCUM-2MD3 in the stomach wall; tumors and metastases were collected and analyzed by immunohistochemistry. Results Many of the genes with increased expression in CAFs compared with NFs were associated with transforming growth factor beta 1 (TGFB1) activity. When CAFs were cultured in extracellular matrix, they became more motile than NFs; DGC cells incubated with CAFs were also more motile and invasive in vitro than DGC cells not incubated with CAFs. When injected into nude mice, CAF-incubated DGC cells invaded a greater number of lymphatic vessels than NF-incubated DGC cells. We identified RHBDF2 as a gene overexpressed in CAFs compared with NFs. Knockdown of RHBDF2 in CAFs reduced their elongation and motility in response to TGFB1, whereas overexpression of RHBDF2 in NFs increased their motility in extracellular matrix. RHBDF2 appeared to regulate oncogenic and non-canonical TGFB1 signaling. Knockdown of RHBDF2 in CAFs reduced cleavage of the TGFB receptor 1 (TGFBR1) by ADAM metallopeptidase domain 17 (ADAM17 or TACE) and reduced expression of genes that regulate motility. Incubation of NFs with in interleukin 1 alpha (IL1A), IL1B or tumor necrosis factor, secreted by DGCs, increased fibroblast expression of RHBDF2. Simultaneous high expression of these cytokines in GC samples was associated with shorter survival times of patients. Conclusions In CAFs isolated from human DGCs, we observed increased expression of RHBDF2, which regulates TGFB1 signaling. Expression of RHBDF2 in fibroblasts is induced by inflammatory cytokines (such as IL1A, IL1B, and tumor necrosis factor) secreted by DGCs. RHBDF2 promotes cleavage of TGFBR1 by activating TACE and motility of CAFs in response to TGFB1. These highly motile CAFs induce DGCs to invade extracellular matrix and lymphatic vessels in nude mice.

UR - http://www.scopus.com/inward/record.url?scp=85020925887&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85020925887&partnerID=8YFLogxK

U2 - 10.1053/j.gastro.2017.03.046

DO - 10.1053/j.gastro.2017.03.046

M3 - Article

VL - 153

SP - 191-204.e16

JO - Gastroenterology

JF - Gastroenterology

SN - 0016-5085

IS - 1

ER -