ADacof: Adaptive collaboration of flows for video frame interpolation

Hyeongmin Lee, Taeoh Kim, Tae Young Chung, Daehyun Pak, Yuseok Ban, Sangyoun Lee

Research output: Contribution to journalConference articlepeer-review

83 Citations (Scopus)

Abstract

Video frame interpolation is one of the most challenging tasks in video processing research. Recently, many studies based on deep learning have been suggested. Most of these methods focus on finding locations with useful information to estimate each output pixel using their own frame warping operations. However, many of them have Degrees of Freedom (DoF) limitations and fail to deal with the complex motions found in real world videos. To solve this problem, we propose a new warping module named Adaptive Collaboration of Flows (AdaCoF). Our method estimates both kernel weights and offset vectors for each target pixel to synthesize the output frame. AdaCoF is one of the most generalized warping modules compared to other approaches, and covers most of them as special cases of it. Therefore, it can deal with a significantly wide domain of complex motions. To further improve our framework and synthesize more realistic outputs, we introduce dual-frame adversarial loss which is applicable only to video frame interpolation tasks. The experimental results show that our method outperforms the state-of-the-art methods for both fixed training set environments and the Middlebury benchmark. Our source code is available at https://github.com/HyeongminLEE/AdaCoF-pytorch.

Original languageEnglish
Article number9156931
Pages (from-to)5315-5324
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
Publication statusPublished - 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: 2020 Jun 142020 Jun 19

Bibliographical note

Funding Information:
Acknowledgement This research was supported by R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA(NRF) funded by Ministry of Science and ICT (NRF-2018M3E3A1057289).

Funding Information:
This research was supported by R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA(NRF) funded by Ministry of Science and ICT (NRF-2018M3E3A1057289).

Publisher Copyright:
© 2020 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'ADacof: Adaptive collaboration of flows for video frame interpolation'. Together they form a unique fingerprint.

Cite this