Abstract
While recent face anti-spoofing methods perform well under the intra-domain setups, an effective approach needs to account for much larger appearance variations of images acquired in complex scenes with different sensors for robust performance. In this paper, we present adaptive vision transformers (ViT) for robust cross-domain face anti-spoofing. Specifically, we adopt ViT as a backbone to exploit its strength to account for long-range dependencies among pixels. We further introduce the ensemble adapters module and feature-wise transformation layers in the ViT to adapt to different domains for robust performance with a few samples. Experiments on several benchmark datasets show that the proposed models achieve both robust and competitive performance against the state-of-the-art methods for cross-domain face anti-spoofing using a few samples.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2022 - 17th European Conference, 2022, Proceedings |
Editors | Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 37-54 |
Number of pages | 18 |
ISBN (Print) | 9783031197772 |
DOIs | |
Publication status | Published - 2022 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: 2022 Oct 23 → 2022 Oct 27 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13673 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 22/10/23 → 22/10/27 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)