All-digital process-variation-calibrated timing generator for ATE with 1.95-ps resolution and maximum 1.2-GHz test rate

Dong Hoon Jung, Kyungho Ryu, Jung Hyun Park, Seong Ook Jung

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


In this paper, an all-digital process-variation-calibrated high-performance timing generator for an automatic test equipment is proposed. The proposed timing generator generates process-variation-tolerant variable delays for high and wide-range testing clock frequency. In order to increase the testing clock frequency, a channel of the proposed timing generator consists of four subtiming generators operating in parallel. In addition, to improve process variation robustness, a precise eight-phase generator consisting of an accurate reference generator and a phase generator with dual-loop calibration (CAL) is proposed, and a phase error of less than 1.21° is achieved. Dynamic and static CAL techniques are also adopted in the edge vernier. A prototype chip having eight channels is fabricated using 0.13-μm CMOS technology. The proposed timing generator has an arbitrary test cycle frequency of up to 1.2 GHz, a timing resolution of 1.95 ps, a power consumption of 90 mW, and an area of 1.5 mm2.

Original languageEnglish
Pages (from-to)1015-1025
Number of pages11
JournalIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Issue number6
Publication statusPublished - 2018 Jun

Bibliographical note

Funding Information:
Manuscript received September 14, 2017; revised December 8, 2017; accepted January 13, 2018. Date of publication February 14, 2018; date of current version May 22, 2018. This work was supported by the IT R&D program of MKE/KEIT (10034834, development of ASIC chip for next-generation high-speed ATE). (Corresponding author: Seong-Ook Jung.) D.-H. Jung and K. Ryu were with the School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea. They are now with Samsung Electronics Co., Ltd., Yongin 446-711, South Korea.

Publisher Copyright:
© 1993-2012 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'All-digital process-variation-calibrated timing generator for ATE with 1.95-ps resolution and maximum 1.2-GHz test rate'. Together they form a unique fingerprint.

Cite this