TY - JOUR
T1 - Alternative estimation of human exposure of single-walled carbon nanotubes using three-dimensional tissue-engineered human lung
AU - Stoker, Emily
AU - Purser, Forrest
AU - Kwon, Soonjo
AU - Park, Young Bin
AU - Lee, Joon Sang
PY - 2008/11
Y1 - 2008/11
N2 - Recent discoveries of various forms of carbon nanostructure have stimulated research on their applications and hold promise for applications in medicine and other related engineering areas. Although carbon nanotubes (CNTs) are already being produced on a massive scale, few studies have been performed which test the potential harmful effects of this new technology. The authors used a three-dimensional in vitro model of the human airway using a coculture of normal human bronchial epithelial cells and normal human fibroblasts for the health risk assessment of CNTs on the human respiratory systems. The authors used aqueous single-walled carbon nanotube (SWCNT) solution. The average length and diameter of nanotube ropes were about 500 nm and less than 10 nm, respectively. The authors measured the production of nitric oxide (NO) as an inflammatory marker and mitochondrial activity using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay as a cytotoxic response of the cell layers following exposure of different concentration of aqueous SWCNT solution. The results indicated that NO production was dramatically increased and cell viability was decreased following exposure of different concentrations of SWCNTs. Transepithelial electrical resistance (TER) across the coculture layers was measured to observe the changes in airway physiological function following exposure of different concentrations of SWCNTs. TER value was dramatically decreased following exposure of 20% SWCNT (8 g/ml). In this study, the authors presented viable alternatives to in vivo tests to evaluate the toxicity of engineered SWCNTs. Cytotoxic/inflammatory responses and barrier function of the human lung layers following exposure of SWCNTs were observed using in vitro coculture system of airway.
AB - Recent discoveries of various forms of carbon nanostructure have stimulated research on their applications and hold promise for applications in medicine and other related engineering areas. Although carbon nanotubes (CNTs) are already being produced on a massive scale, few studies have been performed which test the potential harmful effects of this new technology. The authors used a three-dimensional in vitro model of the human airway using a coculture of normal human bronchial epithelial cells and normal human fibroblasts for the health risk assessment of CNTs on the human respiratory systems. The authors used aqueous single-walled carbon nanotube (SWCNT) solution. The average length and diameter of nanotube ropes were about 500 nm and less than 10 nm, respectively. The authors measured the production of nitric oxide (NO) as an inflammatory marker and mitochondrial activity using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay as a cytotoxic response of the cell layers following exposure of different concentration of aqueous SWCNT solution. The results indicated that NO production was dramatically increased and cell viability was decreased following exposure of different concentrations of SWCNTs. Transepithelial electrical resistance (TER) across the coculture layers was measured to observe the changes in airway physiological function following exposure of different concentrations of SWCNTs. TER value was dramatically decreased following exposure of 20% SWCNT (8 g/ml). In this study, the authors presented viable alternatives to in vivo tests to evaluate the toxicity of engineered SWCNTs. Cytotoxic/inflammatory responses and barrier function of the human lung layers following exposure of SWCNTs were observed using in vitro coculture system of airway.
UR - http://www.scopus.com/inward/record.url?scp=67449101399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67449101399&partnerID=8YFLogxK
U2 - 10.1080/10915810802552138
DO - 10.1080/10915810802552138
M3 - Article
C2 - 19482823
AN - SCOPUS:67449101399
SN - 1091-5818
VL - 27
SP - 441
EP - 448
JO - International Journal of Toxicology
JF - International Journal of Toxicology
IS - 6
ER -