An Effective Way to Improve Bifunctional Electrocatalyst Activity of Manganese Oxide via Control of Bond Competition

Bohyun Kang, Xiaoyan Jin, Seung Mi Oh, Sharad B. Patil, Min Gyu Kim, Sun Hee Kim, Seong Ju Hwang

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)


A critical role of bond competition in tailoring Mn valence state and bifunctional electrocatalyst activity of manganese oxide is evidenced by the remarkable improvement of the electrocatalyst activity of & #x03B1;-MnO2 upon the partial substitution of electronegative Ru4+ ion. The replacement of Mn4+ ion with more electronegative Ru4+ one is quite effective in weakening adjacent (Mn−O) bonds in terms of bond competition, leading to the stabilization of Jahn-Teller active Mn3+ species, as well as in providing electrocatalytically active Ru sites. The resulting Ru-substituted & #x03B1;-Mn1−xRuxO2 nanowires show much higher electrocatalyst activities for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) than does the physical mixture of & #x03B1;-MnO2 and RuO2, indicating the main role of (Mn−O) bond covalency in the optimization of the bifunctional electrocatalyst activity of manganese oxide. The present study underscores that, like the previous strategy of structural disorder enhancement, the substitution of highly electronegative cation can provide a novel efficient way of improving the electrocatalyst performance of manganese oxide via the bond competition between adjacent (Ru−O) and (Mn−O) bonds.

Original languageEnglish
Pages (from-to)107-116
Number of pages10
JournalApplied Catalysis B: Environmental
Publication statusPublished - 2018 Nov 15

Bibliographical note

Funding Information:
1 These authors contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2A1A17069463) and by the Korea government (MSIT) (No. NRF-2017R1A5A1015365). The experiments at PAL were supported in part by MOST and POSTECH. Appendix A

Publisher Copyright:
© 2018 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Environmental Science(all)
  • Process Chemistry and Technology


Dive into the research topics of 'An Effective Way to Improve Bifunctional Electrocatalyst Activity of Manganese Oxide via Control of Bond Competition'. Together they form a unique fingerprint.

Cite this