An experimental study of syn-gas production via microwave plasma reforming of methane, iso-octane and gasoline

Tae Soo Kim, Soonho Song, Kwang Min Chun, Sang Hun Lee

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

A newly developed microwave plasma system for fuel reforming was tested for three different hydrocarbon fuels. The microwave plasma system was powered by a low cost commercial magnetron and power supply. The microwave power was delivered to the nozzle from the magnetron via a coaxial cable, which offers tremendous flexibility for system design and applications. A non-premixed configuration was achieved by delivering a separate stream of fuel to the plasma plume, which is composed of diluted oxygen only. The feasibility of syn-gas production capability of the microwave plasma system was demonstrated and the reforming characteristics of methane, iso-octane and gasoline were compared. The effects of input power, injected fuel amount, total flow rate and O/C ratio were evaluated. The production rates of both hydrogen and carbon monoxide were proportional to the input power and the inverse of the total flow rate. As a result, the maximum efficiency of 3.12% was obtained with iso-octane for power consumption of 28.8 W, O/C ratio of 1, and 0.1 g/min of fuel supply. Liquid fuels produced more syn-gas and showed better efficiency than methane for the same input powers and O/C ratios.

Original languageEnglish
Pages (from-to)2734-2743
Number of pages10
JournalEnergy
Volume35
Issue number6
DOIs
Publication statusPublished - 2010 Jun

Bibliographical note

Funding Information:
This work is the outcome of research funds from the Korea Research Foundation (KRF) and a Manpower Development Project of the Specialized Graduate School of Hydrogen and Fuel Cell supported financially by the Ministry of Commerce, Industry, and Energy (MOCIE).

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Modelling and Simulation
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Pollution
  • Energy(all)
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Management, Monitoring, Policy and Law
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An experimental study of syn-gas production via microwave plasma reforming of methane, iso-octane and gasoline'. Together they form a unique fingerprint.

Cite this