An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus

Hyeong Rae Kim, Sanggwon An, Jungho Hwang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was “non-detectable” however, subsequent HTH enrichment for 10 min caused the “non-detectable” sample to become “detectable” (cycle threshold (CT) value of 33.8 ± 0.06).

Original languageEnglish
Article number112656
JournalBiosensors and Bioelectronics
Volume170
DOIs
Publication statusPublished - 2020 Dec 15

Bibliographical note

Funding Information:
This research was supported by BioNano Health-Guard Research Center funded by the Ministry of Science and ICT (MSIT) of Korea as Global Frontier Project (Grant number H-GUARD_2013M3A6B2078959 ).

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Biomedical Engineering
  • Electrochemistry

Fingerprint Dive into the research topics of 'An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus'. Together they form a unique fingerprint.

Cite this