Abstract
This paper presents the analysis of a high-Tc superconducting (HTS) power converting system, as well as its operational characteristics. The converting system can be used to charge and discharge a magnet made of series-connected pancake coils. The HTS converting system consists of two heaters, a primary copper winding, a secondary HTS winding, a series-connected HTS pancake coil, an iron core and a conventional copper load. In the experiments, the charging and discharging periods were 7.5 and 2 s, respectively. A partial region of the superconducting tape in a secondary HTS winding is switched to a normal region by a buried heating coil. To measure the converting-current with respect to the magnet flux changes, a hall sensor was installed at the center of the pancake coil. In this experiment, the charging-current and discharging-energy reached about 51.7 A and 36.8 J, respectively. The experimental results have been compared with theoretical predictions by using the finite difference method.
Original language | English |
---|---|
Article number | 7053951 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 25 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2015 Jun 1 |
Bibliographical note
Publisher Copyright:© 2002-2011 IEEE.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering