Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance

Ji Hun Park, Young Uk Kim, Jisoo Jeon, Beom Yeol Yun, Yujin Kang, Sumin Kim

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study suggests a new perspective of biochar as a building material that improve not only for the strength but also hygrothermal properties. Biochar has a high porosity and surface area created by pyrolysis. It can be suitably used as a porous material because porous materials are used by incorporating into building materials for improving hygrothermal performance in the construction sector. To analyze whether biochar can be used as a functional building material to improve the hygrothermal performance, two types of biochar, made from oilseed rape (OSB) and mixed softwood (SWB), were prepared. A biochar-mortar composite was prepared according to the mixing ratio of the biochar from 2 wt% to 8 wt%, and the compressive strength and hygrothermal performance of them were analyzed. The compressive strength is the highest when 4 wt% of biochar into the mortar was mixed regardless of the type of biochar. Thermal conductivity of biochar-mortar composites was decreased as the biochar addition increased, and the value of biochar-mortar composites with 8 wt% OSB decreases by maximum 57.6% compared to the conventional cement mortar. The water vapor resistance factor of biochar-mortar composites increases, and biochar-mortar composites with 8 wt% SWB increases by maximum 50.9% compared to the reference. WUFI simulation shows that the biochar-mortar composites can contribute to a humidity control and no mold growth. The biochar-mortar composites can also contribute to energy savings although the amount of savings is insignificant. As a result, this study proved that when the mortar with biochar addition was possible to improve not only strength but also hygrothermal properties of mortar. This approach will be a new perspective that biochar can apply to the building material in practice.

Original languageEnglish
Article number145552
JournalScience of the Total Environment
Volume775
DOIs
Publication statusPublished - 2021 Jun 25

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C4100284 ).

Publisher Copyright:
© 2021 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance'. Together they form a unique fingerprint.

Cite this