Analysis of the glass transition behavior of polymer-salt complexes: An extended configurational entropy model

Jong Hak Kim, Byoung Ryul Min, Jongok Won, Yong Soo Kang

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)

Abstract

A new molecular thermodynamic model is developed of the glass transition temperatures (Tg) of binary polymer-salt complexes by combining configurational entropy theory with Guggenheim's form of the Debye-Hückel theory. The interactions between the polymer chains and the salt as well as those between cations and anions are accounted for by this model. The predictions of this extended configurational entropy theory are compared with the Tg values of poly(2-ethyl-2-oxazoline) (POZ) complexed with AgBF4, AgClO4, AgCF3SO3, and AgNO3 at various compositions, as obtained by differential scanning calorimetry (DSC). The model accurately predicts the experimental Tg values even at high concentrations of silver salt (i.e., up to a mole ratio of [Ag]/[C=O] = 1/1), where the deviation of the simple configurational entropy theory from experimental data is large. Moreover, the maximum in the glass transition temperature, i.e., the increase in Tg with salt concentration at low salt concentrations but its decrease at high salt concentrations, is explicable with this model.

Original languageEnglish
Pages (from-to)5901-5905
Number of pages5
JournalJournal of Physical Chemistry B
Volume107
Issue number24
DOIs
Publication statusPublished - 2003 Jun 19

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Analysis of the glass transition behavior of polymer-salt complexes: An extended configurational entropy model'. Together they form a unique fingerprint.

Cite this