Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system

Yihyung Jo, Jungheum Yeon, Hwa Jung Kim, Seung-Taek Lee

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14) is known to activate pro-matrix metalloproteinase-2 (pro-MMP-2; progelatinase A) on the cell surface. To analyse the tissue inhibitor of metalloproteinases-2 (TIMP-2) effect on activation of pro-MMP-2 by MT1-MMP, we have expressed the full-size MT1-MMP (fMT1-MMP) and a transmembrane (TM)-domain-deleted soluble MT1-MMP (sMT1-MMP) in the baculovirus/Sf9 (Spodoptera frugiperda 9) insect-cell system, where neither endogenous gelatinolytic MMPs nor TIMP-2 are expressed. Both fMT1-MMP and sMT1-MMP expressed in the expression system were found not to contain the pro-domain and were able to activate the TIMP-2-free pro-MMP-2. Both in the insect cells and in vitro, activation of pro-MMP-2 by fMT1-MMP was enhanced at low concentrations of TIMP-2 and inhibited by its higher concentrations. The maximal enhancing effect was detected at 0.05 molar fraction of TIMP-2/fMT1-MMP. In contrast, activation of pro-MMP-2 by sMT1-MMP was dose-dependently inhibited by TIMP-2. These results demonstrate that the TM domain of MT1-MMP is not required for the ability to activate pro-MMP-2, but is required for the enhancing effect of TIMP-2 on pro-MMP-2 activation by recruiting pro-MMP-2 to the MT1-MMP-TIMP-2 complex as a cell-surface pro-MMP-2 receptor. Moreover, our data strongly suggest that the pro-domain of MT1-MMP is not required for the TIMP-2-mediated enhancing effect on pro-MMP-2 activation. In addition, the pro-MMP-2 in the MT1-MMP-TIMP-2-pro-MMP-2 ternary complex was not activated without external activator, but readily by addition of sMT1-MMP. This result demonstrates that MT1-MMP free of TIMP-2 would be the enzyme responsible for activation of the pro-MMP-2 in the ternary complex under physiological conditions.

Original languageEnglish
Pages (from-to)511-519
Number of pages9
JournalBiochemical Journal
Volume345
Issue number3
DOIs
Publication statusPublished - 2000 Feb 1

Fingerprint

Matrix Metalloproteinase 14
Tissue Inhibitor of Metalloproteinase-2
Baculoviridae
Matrix Metalloproteinase 2
Insects
Chemical activation
Matrix Metalloproteinase Inhibitors
progelatinase
Sf9 Cells
Enzyme Activation

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{330da3ae05874cc3a86faa7eaec1bc17,
title = "Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system",
abstract = "Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14) is known to activate pro-matrix metalloproteinase-2 (pro-MMP-2; progelatinase A) on the cell surface. To analyse the tissue inhibitor of metalloproteinases-2 (TIMP-2) effect on activation of pro-MMP-2 by MT1-MMP, we have expressed the full-size MT1-MMP (fMT1-MMP) and a transmembrane (TM)-domain-deleted soluble MT1-MMP (sMT1-MMP) in the baculovirus/Sf9 (Spodoptera frugiperda 9) insect-cell system, where neither endogenous gelatinolytic MMPs nor TIMP-2 are expressed. Both fMT1-MMP and sMT1-MMP expressed in the expression system were found not to contain the pro-domain and were able to activate the TIMP-2-free pro-MMP-2. Both in the insect cells and in vitro, activation of pro-MMP-2 by fMT1-MMP was enhanced at low concentrations of TIMP-2 and inhibited by its higher concentrations. The maximal enhancing effect was detected at 0.05 molar fraction of TIMP-2/fMT1-MMP. In contrast, activation of pro-MMP-2 by sMT1-MMP was dose-dependently inhibited by TIMP-2. These results demonstrate that the TM domain of MT1-MMP is not required for the ability to activate pro-MMP-2, but is required for the enhancing effect of TIMP-2 on pro-MMP-2 activation by recruiting pro-MMP-2 to the MT1-MMP-TIMP-2 complex as a cell-surface pro-MMP-2 receptor. Moreover, our data strongly suggest that the pro-domain of MT1-MMP is not required for the TIMP-2-mediated enhancing effect on pro-MMP-2 activation. In addition, the pro-MMP-2 in the MT1-MMP-TIMP-2-pro-MMP-2 ternary complex was not activated without external activator, but readily by addition of sMT1-MMP. This result demonstrates that MT1-MMP free of TIMP-2 would be the enzyme responsible for activation of the pro-MMP-2 in the ternary complex under physiological conditions.",
author = "Yihyung Jo and Jungheum Yeon and Kim, {Hwa Jung} and Seung-Taek Lee",
year = "2000",
month = "2",
day = "1",
doi = "10.1042/0264-6021:3450511",
language = "English",
volume = "345",
pages = "511--519",
journal = "Biochemical Journal",
issn = "0264-6021",
publisher = "Portland Press Ltd.",
number = "3",

}

TY - JOUR

T1 - Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system

AU - Jo, Yihyung

AU - Yeon, Jungheum

AU - Kim, Hwa Jung

AU - Lee, Seung-Taek

PY - 2000/2/1

Y1 - 2000/2/1

N2 - Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14) is known to activate pro-matrix metalloproteinase-2 (pro-MMP-2; progelatinase A) on the cell surface. To analyse the tissue inhibitor of metalloproteinases-2 (TIMP-2) effect on activation of pro-MMP-2 by MT1-MMP, we have expressed the full-size MT1-MMP (fMT1-MMP) and a transmembrane (TM)-domain-deleted soluble MT1-MMP (sMT1-MMP) in the baculovirus/Sf9 (Spodoptera frugiperda 9) insect-cell system, where neither endogenous gelatinolytic MMPs nor TIMP-2 are expressed. Both fMT1-MMP and sMT1-MMP expressed in the expression system were found not to contain the pro-domain and were able to activate the TIMP-2-free pro-MMP-2. Both in the insect cells and in vitro, activation of pro-MMP-2 by fMT1-MMP was enhanced at low concentrations of TIMP-2 and inhibited by its higher concentrations. The maximal enhancing effect was detected at 0.05 molar fraction of TIMP-2/fMT1-MMP. In contrast, activation of pro-MMP-2 by sMT1-MMP was dose-dependently inhibited by TIMP-2. These results demonstrate that the TM domain of MT1-MMP is not required for the ability to activate pro-MMP-2, but is required for the enhancing effect of TIMP-2 on pro-MMP-2 activation by recruiting pro-MMP-2 to the MT1-MMP-TIMP-2 complex as a cell-surface pro-MMP-2 receptor. Moreover, our data strongly suggest that the pro-domain of MT1-MMP is not required for the TIMP-2-mediated enhancing effect on pro-MMP-2 activation. In addition, the pro-MMP-2 in the MT1-MMP-TIMP-2-pro-MMP-2 ternary complex was not activated without external activator, but readily by addition of sMT1-MMP. This result demonstrates that MT1-MMP free of TIMP-2 would be the enzyme responsible for activation of the pro-MMP-2 in the ternary complex under physiological conditions.

AB - Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14) is known to activate pro-matrix metalloproteinase-2 (pro-MMP-2; progelatinase A) on the cell surface. To analyse the tissue inhibitor of metalloproteinases-2 (TIMP-2) effect on activation of pro-MMP-2 by MT1-MMP, we have expressed the full-size MT1-MMP (fMT1-MMP) and a transmembrane (TM)-domain-deleted soluble MT1-MMP (sMT1-MMP) in the baculovirus/Sf9 (Spodoptera frugiperda 9) insect-cell system, where neither endogenous gelatinolytic MMPs nor TIMP-2 are expressed. Both fMT1-MMP and sMT1-MMP expressed in the expression system were found not to contain the pro-domain and were able to activate the TIMP-2-free pro-MMP-2. Both in the insect cells and in vitro, activation of pro-MMP-2 by fMT1-MMP was enhanced at low concentrations of TIMP-2 and inhibited by its higher concentrations. The maximal enhancing effect was detected at 0.05 molar fraction of TIMP-2/fMT1-MMP. In contrast, activation of pro-MMP-2 by sMT1-MMP was dose-dependently inhibited by TIMP-2. These results demonstrate that the TM domain of MT1-MMP is not required for the ability to activate pro-MMP-2, but is required for the enhancing effect of TIMP-2 on pro-MMP-2 activation by recruiting pro-MMP-2 to the MT1-MMP-TIMP-2 complex as a cell-surface pro-MMP-2 receptor. Moreover, our data strongly suggest that the pro-domain of MT1-MMP is not required for the TIMP-2-mediated enhancing effect on pro-MMP-2 activation. In addition, the pro-MMP-2 in the MT1-MMP-TIMP-2-pro-MMP-2 ternary complex was not activated without external activator, but readily by addition of sMT1-MMP. This result demonstrates that MT1-MMP free of TIMP-2 would be the enzyme responsible for activation of the pro-MMP-2 in the ternary complex under physiological conditions.

UR - http://www.scopus.com/inward/record.url?scp=0034141350&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034141350&partnerID=8YFLogxK

U2 - 10.1042/0264-6021:3450511

DO - 10.1042/0264-6021:3450511

M3 - Article

VL - 345

SP - 511

EP - 519

JO - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - 3

ER -