Analysis of torque capacities in hybrid actuation for human-friendly robot design

Dongjun Shin, Fabian Seitz, Oussama Khatib, Mark Cutkosky

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Citations (Scopus)

Abstract

A formidable challenge in the development of human-friendly robots is to simultaneously achieve desired levels of performance and safety. To address this issue, a hybrid actuation concept has been proposed, combining large, low impedance actuators and small, high-frequency actuators. However, the determination of design parameters remains a challenge, as stiffness and electrical motor torque capacity simultaneously affect both the control performance and the safety of the manipulator. Using analytical models of the hybrid actuation system, we propose a methodology to achieve a combination of low impedance and high control bandwidth. The optimized parameters are verified and compared with previous ones through simulation and experimentation.

Original languageEnglish
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages799-804
Number of pages6
DOIs
Publication statusPublished - 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: 2010 May 32010 May 7

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period10/5/310/5/7

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Analysis of torque capacities in hybrid actuation for human-friendly robot design'. Together they form a unique fingerprint.

Cite this